Harish-Chandra Isomorphism
In mathematics, the Harish-Chandra isomorphism, introduced by , is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center \mathcal(U(\mathfrak)) of the universal enveloping algebra U(\mathfrak) of a reductive Lie algebra \mathfrak to the elements S(\mathfrak)^W of the symmetric algebra S(\mathfrak) of a Cartan subalgebra \mathfrak that are invariant under the Weyl group W. Introduction and setting Let \mathfrak be a semisimple Lie algebra, \mathfrak its Cartan subalgebra and \lambda, \mu \in \mathfrak^* be two elements of the weight space (where \mathfrak^* is the dual of \mathfrak) and assume that a set of positive roots \Phi_+ have been fixed. Let V_\lambda and V_\mu be highest weight modules with highest weights \lambda and \mu respectively. Central characters The \mathfrak-modules V_\lambda and V_\mu are representations of the universal enveloping algebra U(\mathfrak) and its center acts on the modules by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive Root
In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory. Definitions and examples As a first example, consider the six vectors in 2-dimensional Euclidean space, R2, as shown in the image at the right; call them roots. These vectors span the whole ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Betti Number
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they are all finite. The ''n''th Betti number represents the rank of the ''n''th homology group, denoted ''H''''n'', which tells us the maximum number of cuts that can be made before separating a surface into two pieces or 0-cycles, 1-cycles, etc. For example, if H_n(X) \cong 0 then b_n(X) = 0, if H_n(X) \cong \mathbb then b_n(X) = 1, if H_n(X) \cong \mathbb \oplus \mathbb then b_n(X) = 2, if H_n(X) \cong \mathbb \oplus \mathbb\oplus \mathbb then b_n(X) = 3, etc. Note that only the ranks of infinite groups are considered, so for example if H_n(X) \cong \mathbb^k \oplus \mathbb/(2), where \mat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cohomology Ring
In mathematics, specifically algebraic topology, the cohomology ring of a topological space ''X'' is a ring formed from the cohomology groups of ''X'' together with the cup product serving as the ring multiplication. Here 'cohomology' is usually understood as singular cohomology, but the ring structure is also present in other theories such as de Rham cohomology. It is also functorial: for a continuous mapping of spaces one obtains a ring homomorphism on cohomology rings, which is contravariant. Specifically, given a sequence of cohomology groups ''H''''k''(''X'';''R'') on ''X'' with coefficients in a commutative ring ''R'' (typically ''R'' is Z''n'', Z, Q, R, or C) one can define the cup product, which takes the form :H^k(X;R) \times H^\ell(X;R) \to H^(X; R). The cup product gives a multiplication on the direct sum of the cohomology groups :H^\bullet(X;R) = \bigoplus_ H^k(X; R). This multiplication turns ''H''•(''X'';''R'') into a ring. In fact, it is naturally an N-graded r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (to allow division), or equivalently, the concept of addition and subtraction. Combining these two ideas, one obtains a continuous group where multiplying points and their inverses is continuous. If the multiplication and taking of inverses are smoothness, smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the circle group. Rotating a circle is an example of a continuous symmetry. For an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual Coxeter Number
In mathematics, a Coxeter element is an element of an irreducible Coxeter group which is a product of all simple reflections. The product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. This order is known as the Coxeter number. They are named after British-Canadian geometer H.S.M. Coxeter, who introduced the groups in 1934 as abstractions of reflection groups. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple conjugacy classes of Coxeter elements, and they have infinite order. There are many different ways to define the Coxeter number of an irreducible root system. *The Coxeter number is the order of any Coxeter element;. *The Coxeter number is where is the rank, and is the number of reflections. In the crystallographic case, is half the number of roots; and is the dimension of the corresponding semisimple Lie algebra. *If the hi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coxeter Number
In mathematics, a Coxeter element is an element of an irreducible Coxeter group which is a product of all simple reflections. The product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. This order is known as the Coxeter number. They are named after British-Canadian geometer H.S.M. Coxeter, who introduced the groups in 1934 as abstractions of reflection groups. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple conjugacy classes of Coxeter elements, and they have infinite order. There are many different ways to define the Coxeter number of an irreducible root system. *The Coxeter number is the order of any Coxeter element;. *The Coxeter number is where is the rank, and is the number of reflections. In the crystallographic case, is half the number of roots; and is the dimension of the corresponding semisimple Lie algebra. *If th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chevalley–Shephard–Todd Theorem
In mathematics, the Chevalley–Shephard–Todd theorem in invariant theory of finite groups states that the ring of invariants of a finite group acting on a complex vector space is a polynomial ring if and only if the group is generated by pseudoreflections. In the case of subgroups of the complex general linear group the theorem was first proved by who gave a case-by-case proof. soon afterwards gave a uniform proof. It has been extended to finite linear groups over an arbitrary field in the non-modular case by Jean-Pierre Serre. Statement of the theorem Let ''V'' be a finite-dimensional vector space over a field ''K'' and let ''G'' be a finite subgroup of the general linear group ''GL''(''V''). An element ''s'' of ''GL''(''V'') is called a pseudoreflection if it fixes a codimension 1 subspace of ''V'' and is not the identity transformation ''I'', or equivalently, if the kernel Ker(''s'' − ''I'') has codimension one in ''V''. Assume that the order of ''G'' is coprime ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers. Polynomial rings occur and are often fundamental in many parts of mathematics such as number theory, commutative algebra, and algebraic geometry. In ring theory, many classes of rings, such as unique factorization domains, regular rings, group rings, rings of formal power series, Ore polynomials, graded rings, have been introduced for generalizing some properties of polynomial rings. A closely related notion is that of the ring of polynomial functions on a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generalized Verma Module
In mathematics, generalized Verma modules are a generalization of a (true) Verma module, and are objects in the representation theory of Lie algebras. They were studied originally by James Lepowsky in the 1970s. The motivation for their study is that their homomorphisms correspond to invariant differential operators over generalized flag manifolds. The study of these operators is an important part of the theory of parabolic geometries. Definition Let \mathfrak be a semisimple Lie algebra and \mathfrak a parabolic subalgebra of \mathfrak. For any irreducible (representation theory), irreducible finite-dimensional representation of a Lie algebra, representation V of \mathfrak we define the generalized Verma module to be the relative tensor product :M_(V):=\mathcal(\mathfrak)\otimes_ V. The action of \mathfrak is left multiplication in \mathcal(\mathfrak). If λ is the highest weight of V, we sometimes denote the Verma module by M_(\lambda). Note that M_(\lambda) makes sense only ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Verma Module
Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics. Verma modules can be used in the classification of irreducible representations of a complex semisimple Lie algebra. Specifically, although Verma modules themselves are infinite dimensional, quotients of them can be used to construct finite-dimensional representations with highest weight \lambda, where \lambda is dominant and integral. Their homomorphisms correspond to invariant differential operators over flag manifolds. Informal construction We can explain the idea of a Verma module as follows. Let \mathfrak be a semisimple Lie algebra (over \mathbb, for simplicity). Let \mathfrak be a fixed Cartan subalgebra of \mathfrak and let R be the associated root system. Let R^+ be a fixed set of positive roots. For each \alpha\in R^+, choose a nonzero element X_\alpha for the corresponding root space \mathfrak_\alpha and a nonzero element Y_\alpha in the root ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Victor Kac
Victor Gershevich (Grigorievich) Kac (; born 19 December 1943) is a Soviet and American mathematician at MIT, known for his work in representation theory. He co-discovered Kac–Moody algebras, and used the Weyl–Kac character formula for them to reprove the Macdonald identities. He classified the finite-dimensional simple Lie superalgebras, and found the Kac determinant formula for the Virasoro algebra. He is also known for the Kac–Weisfeiler conjectures with Boris Weisfeiler. Biography Kac studied mathematics at Moscow State University, receiving his MS in 1965 and his PhD in 1968. From 1968 to 1976, he held a teaching position at the Moscow Institute of Electronic Machine Building (MIEM). He left the Soviet Union in 1977, becoming an associate professor of mathematics at MIT. In 1981, he was promoted to full professor. Kac received a Sloan Fellowship and the Medal of the Collège de France, both in 1981, and a Guggenheim Fellowship in 1986. He received the Wigner ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |