Gigabit Media Independent Interface
   HOME
*



picture info

Gigabit Media Independent Interface
The media-independent interface (MII) was originally defined as a standard interface to connect a Fast Ethernet (i.e., ) media access control (MAC) block to a PHY chip. The MII is standardized by IEEE 802.3u and connects different types of PHYs to MACs. Being ''media independent'' means that different types of PHY devices for connecting to different media (i.e. twisted pair, fiber optic, etc.) can be used without redesigning or replacing the MAC hardware. Thus any MAC may be used with any PHY, independent of the network signal transmission media. The MII can be used to connect a MAC to an external PHY using a pluggable connector, or directly to a PHY chip on the same PCB. On a PC the CNR connector Type B carries MII signals. Network data on the interface is framed using the IEEE Ethernet standard. As such it consists of a preamble, start frame delimiter, Ethernet headers, protocol-specific data and a cyclic redundancy check (CRC). The original MII transfers network data using ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Media Independent Interface (mii) Connector On Sun Ultra 1
The media-independent interface (MII) was originally defined as a standard interface to connect a Fast Ethernet (i.e., ) media access control (MAC) block to a PHY chip. The MII is standardized by IEEE 802.3u and connects different types of PHYs to MACs. Being ''media independent'' means that different types of PHY devices for connecting to different media (i.e. twisted pair, fiber optic, etc.) can be used without redesigning or replacing the MAC hardware. Thus any MAC may be used with any PHY, independent of the network signal transmission media. The MII can be used to connect a MAC to an external PHY using a pluggable connector, or directly to a PHY chip on the same PCB. On a PC the CNR connector Type B carries MII signals. Network data on the interface is framed using the IEEE Ethernet standard. As such it consists of a preamble, start frame delimiter, Ethernet headers, protocol-specific data and a cyclic redundancy check (CRC). The original MII transfers network data usin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

QSGMII
The media-independent interface (MII) was originally defined as a standard interface to connect a Fast Ethernet (i.e., ) media access control (MAC) block to a PHY chip. The MII is standardized by IEEE 802.3u and connects different types of PHYs to MACs. Being ''media independent'' means that different types of PHY devices for connecting to different media (i.e. twisted pair, fiber optic, etc.) can be used without redesigning or replacing the MAC hardware. Thus any MAC may be used with any PHY, independent of the network signal transmission media. The MII can be used to connect a MAC to an external PHY using a pluggable connector, or directly to a PHY chip on the same PCB. On a PC the CNR connector Type B carries MII signals. Network data on the interface is framed using the IEEE Ethernet standard. As such it consists of a preamble, start frame delimiter, Ethernet headers, protocol-specific data and a cyclic redundancy check (CRC). The original MII transfers network data usin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Energy-Efficient Ethernet
In computer networking, Energy-Efficient Ethernet (EEE) is a set of enhancements to twisted-pair, twinaxial, backplane, and optical fiber Ethernet physical-layer variants that reduce power consumption during periods of low data activity. The intention is to reduce power consumption by 50% or more, while retaining full compatibility with existing equipment. The Institute of Electrical and Electronics Engineers (IEEE), through the IEEE 802.3az task force, developed the standard. The first study group had its call for interest in November 2006, and the official standards task force was authorized in May 2007. The IEEE ratified the final standard in September 2010. Some companies introduced technology to reduce the power required for Ethernet before the standard was ratified, using the name Green Ethernet. Some energy-efficient switch integrated circuits were developed before the IEEE 802.3az Energy-Efficient Ethernet standard was finalized. Potential savings In 2005, all ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jabber (networking)
Ethernet () is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET. The original 10BASE5 Ethernet uses coaxial cable as a shared medium, while the newer Ethernet variants use twisted pair and fiber optic links in conjunction with switches. Over the course of its history, Ethernet data transfer rates have been increased from the original to the latest , with rates up to under development. The Ethernet standards include several wiring and signaling variants of the OSI physical layer. Systems communicating over Ethernet d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Autonegotiation
Autonegotiation is a signaling mechanism and procedure used by Ethernet over twisted pair by which two connected devices choose common transmission parameters, such as speed, duplex mode, and flow control. In this process, the connected devices first share their capabilities regarding these parameters and then choose the highest performance transmission mode they both support. Autonegotiation is defined in clause 28 of IEEE 802.3. and was originally an optional component in the Fast Ethernet standard. It is backwards compatible with the normal link pulses (NLP) used by 10BASE-T. The protocol was significantly extended in the Gigabit Ethernet standard, and is mandatory for 1000BASE-T gigabit Ethernet over twisted pair. In the OSI model, autonegotiation resides in the physical layer. Standardization and interoperability In 1995, the Fast Ethernet standard was released. Because this introduced a new speed option for the same wires, it included a means for connected network adapter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gigabit Ethernet
In computer networking, Gigabit Ethernet (GbE or 1 GigE) is the term applied to transmitting Ethernet frames at a rate of a gigabit per second. The most popular variant, 1000BASE-T, is defined by the IEEE 802.3ab standard. It came into use in 1999, and has replaced Fast Ethernet in wired local networks due to its considerable speed improvement over Fast Ethernet, as well as its use of cables and equipment that are widely available, economical, and similar to previous standards. History Ethernet was the result of research conducted at Xerox PARC in the early 1970s, and later evolved into a widely implemented physical and link layer protocol. Fast Ethernet increased the speed from 10 to 100 megabits per second (Mbit/s). Gigabit Ethernet was the next iteration, increasing the speed to 1000 Mbit/s. * The initial standard for Gigabit Ethernet was produced by the IEEE in June 1998 as IEEE 802.3z, and required optical fiber. 802.3z is commonly referred to as 1000BASE-X, w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

100BASE-T2
In computer networking, Fast Ethernet physical layers carry traffic at the nominal rate of 100 Mbit/s. The prior Ethernet speed was 10 Mbit/s. Of the Fast Ethernet physical layers, 100BASE-TX is by far the most common. Fast Ethernet was introduced in 1995 as the IEEE 802.3u standard and remained the fastest version of Ethernet for three years before the introduction of Gigabit Ethernet. The acronym ''GE/FE'' is sometimes used for devices supporting both standards. Nomenclature The "100" in the media type designation refers to the transmission speed of 100 Mbit/s, while the "BASE" refers to baseband signaling. The letter following the dash ("T" or "F") refers to the physical medium that carries the signal (twisted pair or fiber, respectively), while the last character ("X", "4", etc.) refers to the line code method used. Fast Ethernet is sometimes referred to as 100BASE-X, where "X" is a placeholder for the FX and TX variants. General design Fast Ethernet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classic Ethernet
Classic Ethernet is a family of 10 Mbit/s Ethernet standards, which is the first generation of Ethernet standards. In 10BASE-X, the 10 represents its maximum throughput of 10  Mbit/s, BASE indicates its use of baseband transmission, and X indicates the type of medium used. Varieties Fibre-based standards (10BASE-F) ''10BASE-F'', or sometimes ''10BASE-FX'', is a generic term for the family of 10 Mbit/s Ethernet standards using fiber optic cable. In 10BASE-F, the 10 represents a maximum throughput of 10 Mbit/s, BASE indicates its use of baseband transmission, and F indicates that it relies on medium of fiber-optic cable. The technical standard requires two strands of 62.5/125 µm multimode fiber. One strand is used for data transmission while the other is used for reception, making 10BASE-F a full-duplex technology. There a three different variants of 10BASE-F: 10BASE-FL, 10BASE-FB and 10BASE-FP. Of these only 10BASE-FL experienced widespread use. Wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

100BASE-TX
In computer networking, Fast Ethernet physical layers carry traffic at the nominal rate of 100 Mbit/s. The prior Ethernet speed was 10 Mbit/s. Of the Fast Ethernet physical layers, 100BASE-TX is by far the most common. Fast Ethernet was introduced in 1995 as the IEEE 802.3u standard and remained the fastest version of Ethernet for three years before the introduction of Gigabit Ethernet. The acronym ''GE/FE'' is sometimes used for devices supporting both standards. Nomenclature The "100" in the media type designation refers to the transmission speed of 100 Mbit/s, while the "BASE" refers to baseband signaling. The letter following the dash ("T" or "F") refers to the physical medium that carries the signal (twisted pair or fiber, respectively), while the last character ("X", "4", etc.) refers to the line code method used. Fast Ethernet is sometimes referred to as 100BASE-X, where "X" is a placeholder for the FX and TX variants. General design Fast Etherne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

100BASE-T4
In computer networking, Fast Ethernet physical layers carry traffic at the nominal rate of 100 Mbit/s. The prior Ethernet speed was 10 Mbit/s. Of the Fast Ethernet physical layers, 100BASE-TX is by far the most common. Fast Ethernet was introduced in 1995 as the IEEE 802.3u standard and remained the fastest version of Ethernet for three years before the introduction of Gigabit Ethernet. The acronym ''GE/FE'' is sometimes used for devices supporting both standards. Nomenclature The "100" in the media type designation refers to the transmission speed of 100 Mbit/s, while the "BASE" refers to baseband signaling. The letter following the dash ("T" or "F") refers to the physical medium that carries the signal (twisted pair or fiber, respectively), while the last character ("X", "4", etc.) refers to the line code method used. Fast Ethernet is sometimes referred to as 100BASE-X, where "X" is a placeholder for the FX and TX variants. General design Fast Ethernet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bit Field
A bit field is a data structure that consists of one or more adjacent bits which have been allocated for specific purposes, so that any single bit or group of bits within the structure can be set or inspected. A bit field is most commonly used to represent integral types of known, fixed bit-width, such as single-bit Booleans. The meaning of the individual bits within the field is determined by the programmer; for example, the first bit in a bit field (located at the field's base address) is sometimes used to determine the state of a particular attribute associated with the bit field. Within CPUs and other logic devices, collections of bit fields called flags are commonly used to control or to indicate the outcome of particular operations. Processors have a status register that is composed of flags. For example if the result of an addition cannot be represented in the destination an arithmetic overflow is set. The flags can be used to decide subsequent operations, such as condit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ethernet NIC
A network interface controller (NIC, also known as a network interface card, network adapter, LAN adapter or physical network interface, and by similar terms) is a computer hardware component that connects a computer to a computer network. Early network interface controllers were commonly implemented on expansion cards that plugged into a computer bus. The low cost and ubiquity of the Ethernet standard means that most newer computers have a network interface built into the motherboard, or is contained into a USB-connected dongle. Modern network interface controllers offer advanced features such as interrupt and DMA interfaces to the host processors, support for multiple receive and transmit queues, partitioning into multiple logical interfaces, and on-controller network traffic processing such as the TCP offload engine. Purpose The network controller implements the electronic circuitry required to communicate using a specific physical layer and data link layer standar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]