Gromov–Hausdorff Convergence
In mathematics, Gromov–Hausdorff convergence, named after Mikhail Gromov and Felix Hausdorff, is a notion for convergence of metric spaces which is a generalization of Hausdorff distance. Gromov–Hausdorff distance The Gromov–Hausdorff distance was introduced by David Edwards in 1975, and it was later rediscovered and generalized by Mikhail Gromov in 1981. This distance measures how far two compact metric spaces are from being isometric. If ''X'' and ''Y'' are two compact metric spaces, then ''dGH'' (''X'', ''Y'') is defined to be the infimum of all numbers ''d''''H''(''f''(''X''), ''g''(''Y'')) for all (compact) metric spaces ''M'' and all isometric embeddings ''f'' : ''X'' → ''M'' and ''g'' : ''Y'' → ''M''. Here ''d''''H'' denotes Hausdorff distance between subsets in ''M'' and the ''isometric embedding'' is understood in the global sense, i.e. it must preserve all distances, not only infinitesimally small ones; for example no c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geodesic
In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a " straight line". The noun '' geodesic'' and the adjective '' geodetic'' come from ''geodesy'', the science of measuring the size and shape of Earth, though many of the underlying principles can be applied to any ellipsoidal geometry. In the original sense, a geodesic was the shortest route between two points on the Earth's surface. For a spherical Earth, it is a segment of a great circle (see also great-circle distance). The term has since been generalized to more abstract mathematical spaces; for example, in graph theory, one might consider a geodesic between two vertices/nodes of a graph. In a Riemannian manifold or submanifold, geodesics are characterised by the property of havi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tobias Colding
Tobias Holck Colding (born 1963) is a Danish mathematician working on geometric analysis, and low-dimensional topology. He is the great grandchild of Ludwig August Colding. Biography He was born in Copenhagen, Denmark, to Torben Holck Colding and Benedicte Holck Colding. He received his Ph.D. in mathematics in 1992 at the University of Pennsylvania under Chris Croke. Since 2005 Colding has been a professor of mathematics at MIT. He was on the faculty at the Courant Institute of New York University in various positions from 1992 to 2008. He has also been a visiting professor at MIT (2000–01) and at Princeton University (2001–02) and a postdoctoral fellow at MSRI (1993–94). Colding lives in Cambridge, MA, with his wife and three children. Work In the early stage of his career, Colding did impressive work on manifolds with bounds on Ricci curvature. In 1995 he presented this work at the Geometry Festival. He began working with Jeff Cheeger while at NYU. He gave a 45-mi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jeff Cheeger
Jeff Cheeger (born December 1, 1943) is an American mathematician and Silver Professor at the Courant Institute of Mathematical Sciences of New York University. His main interest is differential geometry and its connections with topology and analysis. Biography Cheeger graduated from Harvard University with a B.A. in 1964. He graduated from Princeton University with an M.S. in 1966 and with a PhD in 1967. He is a Silver Professor at the Courant Institute at New York University where he has worked since 1993. He worked as a teaching assistant and research assistant at Princeton University from 1966–1967, a National Science Foundation postdoctoral fellow and instructor from 1967–1968, an assistant professor from 1968 to 1969 at the University of Michigan, and an associate professor from 1969–1971 at SUNY at Stony Brook. Cheeger was a professor at SUNY, Stony Brook from 1971 to 1985, a leading professor from 1985 to 1990, and a distinguished professor from 1990 until 1992 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relatively Compact
In mathematics, a relatively compact subspace (or relatively compact subset, or precompact subset) of a topological space is a subset whose closure is compact. Properties Every subset of a compact topological space is relatively compact (since a closed subset of a compact space is compact). And in an arbitrary topological space every subset of a relatively compact set is relatively compact. Every compact subset of a Hausdorff space is relatively compact. In a non-Hausdorff space, such as the particular point topology on an infinite set, the closure of a compact subset is ''not'' necessarily compact; said differently, a compact subset of a non-Hausdorff space is not necessarily relatively compact. Every compact subset of a (possibly non-Hausdorff) topological vector space is complete and relatively compact. In the case of a metric topology, or more generally when sequences may be used to test for compactness, the criterion for relative compactness becomes that any sequence in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diameter
In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions are also valid for the diameter of a sphere. In more modern usage, the length d of a diameter is also called the diameter. In this sense one speaks of diameter rather than diameter (which refers to the line segment itself), because all diameters of a circle or sphere have the same length, this being twice the radius r. :d = 2r \qquad\text\qquad r = \frac. The word "diameter" is derived from (), "diameter of a circle", from (), "across, through" and (), "measure". It is often abbreviated \text, \text, d, or \varnothing. Constructions With straightedge and compass, a diameter of a given circle can be constructed as the perpendicular bisector of an arbitrary chord. Drawing two diameters in this way can be used to locate the center of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ricci Curvature
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space. The Ricci tensor can be characterized by measurement of how a shape is deformed as one moves along geodesics in the space. In general relativity, which involves the pseudo-Riemannian setting, this is reflected by the presence of the Ricci tensor in the Raychaudhuri equation. Partly for this reason, the Einstein field equations propose that spacetime can be described by a pseudo-Riemannian metric, with a strikingly simple relationship between the Ricci tensor and the matter content of the universe. Like the metric tensor, the Ricci tensor assigns to each tangent space of the manifold a symmetric bi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gromov's Compactness Theorem (geometry)
In the mathematical field of metric geometry, Mikhael Gromov proved a fundamental compactness theorem for sequences of metric spaces. In the special case of Riemannian manifolds, the key assumption of his compactness theorem is automatically satisfied under an assumption on Ricci curvature. These theorems have been widely used in the fields of geometric group theory and Riemannian geometry. Metric compactness theorem The Gromov–Hausdorff distance defines a notion of distance between any two metric spaces, thereby setting up the concept of a sequence of metric spaces which converges to another metric space. This is known as Gromov–Hausdorff convergence. Gromov found a condition on a sequence of compact metric spaces which ensures that a subsequence converges to some metric space relative to the Gromov–Hausdorff distance: Let be a sequence of compact metric spaces with uniformly bounded diameter. Suppose that for every positive number there is a natural number and, for eve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemannian Geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smoothly from point to point). This gives, in particular, local notions of angle, arc length, length of curves, surface area and volume. From those, some other global quantities can be derived by integral, integrating local contributions. Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "" ("On the Hypotheses on which Geometry is Based"). It is a very broad and abstract generalization of the differential geometry of surfaces in Three-dimensional space, R3. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of geodesics on them, with techniques that can be applied to the study of differentiable manifolds of higher ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cayley Graph
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a Graph (discrete mathematics), graph that encodes the abstract structure of a group (mathematics), group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley), and uses a specified generating set of a group, set of generators for the group. It is a central tool in combinatorial group theory, combinatorial and geometric group theory. The structure and symmetry of Cayley graphs make them particularly good candidates for constructing expander graphs. Definition Let G be a group (mathematics), group and S be a generating set of a group, generating set of G. The Cayley graph \Gamma = \Gamma(G,S) is an Edge coloring, edge-colored directed graph constructed as follows: In his Collected Mathematical Papers 10: 403–405. * Each element g of G is assigned a vertex: the vertex set of \Gamma is identified with G. * Each element s of S is assigned a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gromov's Theorem On Groups Of Polynomial Growth
In geometric group theory, Gromov's theorem on groups of polynomial growth, first proved by Mikhail Gromov, characterizes finitely generated groups of ''polynomial'' growth, as those groups which have nilpotent subgroups of finite index. Statement The growth rate of a group is a well-defined notion from asymptotic analysis. To say that a finitely generated group has polynomial growth means the number of elements of length at most ''n'' (relative to a symmetric generating set) is bounded above by a polynomial function ''p''(''n''). The ''order of growth'' is then the least degree of any such polynomial function ''p''. A nilpotent group ''G'' is a group with a lower central series terminating in the identity subgroup. Gromov's theorem states that a finitely generated group has polynomial growth if and only if it has a nilpotent subgroup that is of finite index. Growth rates of nilpotent groups There is a vast literature on growth rates, leading up to Gromov's theorem. An earli ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Index Of A Subgroup
In mathematics, specifically group theory, the index of a subgroup ''H'' in a group ''G'' is the number of left Coset, cosets of ''H'' in ''G'', or equivalently, the number of right cosets of ''H'' in ''G''. The index is denoted , G:H, or [G:H] or (G:H). Because ''G'' is the disjoint union of the left cosets and because each left coset has the same cardinality, size as ''H'', the index is related to the order (group theory), orders of the two groups by the formula :, G, = , G:H, , H, (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index , G:H, measures the "relative sizes" of ''G'' and ''H''. For example, let G = \Z be the group of integers under addition, and let H = 2\Z be the subgroup consisting of the Parity (mathematics), even integers. Then 2\Z has two cosets in \Z, namely the set of even integers and the set of odd integers, so the index , \Z:2\Z, is 2. More generally, , \Z:n\Z, = n for any positive integer ''n''. When ''G'' i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |