Generalized Balanced Ternary
   HOME



picture info

Generalized Balanced Ternary
Generalized balanced ternary is a generalization of the balanced ternary numeral system to represent points in a higher-dimensional space. It was first described in 1982 by Laurie Gibson and Dean Lucas. It has since been used for various applications, including geospatial and high-performance scientific computing. General form Like standard positional numeral systems, generalized balanced ternary represents a point p as powers of a base B multiplied by digits d_i. p = d_0 + B d_1 + B^2 d_2 + \ldots Generalized balanced ternary uses a transformation matrix as its base B. Digits are vectors chosen from a finite subset \ of the underlying space. One dimension In one dimension, generalized balanced ternary is equivalent to standard balanced ternary, with three digits (0, 1, and −1). B is a 1\times 1 matrix, and the digits D_i are length-1 vectors, so they appear here without the extra brackets. \beginB &= 3 \\ D_0 &= 0 \\ D_1 &= 1 \\ D_2 &= -1\end Addition table This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Balanced Ternary
Balanced ternary is a ternary numeral system (i.e. base 3 with three Numerical digit, digits) that uses a balanced signed-digit representation of the integers in which the digits have the values −1, 0, and 1. This stands in contrast to the standard (unbalanced) ternary system, in which digits have values 0, 1 and 2. The balanced ternary system can represent all integers without using a separate minus sign; the value of the leading non-zero digit of a number has the sign of the number itself. The balanced ternary system is an example of a Non-standard positional numeral systems, non-standard positional numeral system. It was used in some early computers and has also been used to solve balance puzzles. Different sources use different glyphs to represent the three digits in balanced ternary. In this article, T (which resembles a typographical ligature, ligature of the minus sign and 1) represents −1, while 0 and 1 represent themselves. Other conventions include using '−' and '+ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numeral System
A numeral system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbols may represent different numbers in different numeral systems. For example, "11" represents the number ''eleven'' in the decimal or base-10 numeral system (today, the most common system globally), the number ''three'' in the binary or base-2 numeral system (used in modern computers), and the number ''two'' in the unary numeral system (used in tallying scores). The number the numeral represents is called its ''value''. Additionally, not all number systems can represent the same set of numbers; for example, Roman, Greek, and Egyptian numerals don't have a representation of the number zero. Ideally, a numeral system will: *Represent a useful set of numbers (e.g. all integers, or rational numbers) *Give every number represented a unique representation (or a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces'' of any positive integer dimension ''n'', which are called Euclidean ''n''-spaces when one wants to specify their dimension. For ''n'' equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of '' proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as evident (for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE