Generalised Metric
In mathematics, the concept of a generalised metric is a generalisation of that of a metric, in which the distance is not a real number but taken from an arbitrary ordered field. In general, when we define metric space the distance function is taken to be a real-valued function. The real numbers form an ordered field which is Archimedean and order complete. These metric spaces have some nice properties like: in a metric space compactness, sequential compactness and countable compactness are equivalent etc. These properties may not, however, hold so easily if the distance function is taken in an arbitrary ordered field, instead of in \scriptstyle \R. Preliminary definition Let (F, +, \cdot, <) be an arbitrary ordered field, and a nonempty set; a function is called a metric on if the following conditions hold: # if and only if ; # |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Department Of Mathematics, University Of California At Davis
Department may refer to: * Departmentalization, division of a larger organization into parts with specific responsibility Government and military * Department (administrative division), a geographical and administrative division within a country, for example: **Departments of Colombia, a grouping of municipalities ** Departments of France, administrative divisions three levels below the national government **Departments of Honduras ** Departments of Peru, name given to the subdivisions of Peru until 2002 ** Departments of Uruguay * Department (United States Army), corps areas of the U.S. Army prior to World War I *Fire department, a public or private organization that provides emergency firefighting and rescue services * Ministry (government department), a specialized division of a government *Police department, a body empowered by the state to enforce the law *Department (naval) administrative/functional sub-unit of a ship's company. Other uses * ''Department'' (film), a 2012 Bol ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metric Geometry
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Field
In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typically construed, states that given two positive numbers ''x'' and ''y'', there is an integer ''n'' such that ''nx'' > ''y''. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no ''infinitely large'' or ''infinitely small'' elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ '' On the Sphere and Cylinder''. The notion arose from the theory of magnitudes of Ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's axioms for geometry, and the theories of ordered groups, ordered fields, and local fields. An algebraic structure in which any two non-zero elements are ''compar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family (S_i)_ of nonempty sets, there exists an indexed set (x_i)_ such that x_i \in S_i for every i \in I. The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. In many cases, a set arising from choosing elements arbitrarily can be made without invoking the axiom of choice; this is, in particular, the case if the number of sets from which to choose the elements is finite, or if a canonical rule on how to choose the elements is available – some distinguis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Space
In topology and related fields of mathematics, a topological space ''X'' is called a regular space if every closed subset ''C'' of ''X'' and a point ''p'' not contained in ''C'' admit non-overlapping open neighborhoods. Thus ''p'' and ''C'' can be separated by neighborhoods. This condition is known as Axiom T3. The term "T3 space" usually means "a regular Hausdorff space". These conditions are examples of separation axioms. Definitions A topological space ''X'' is a regular space if, given any closed set ''F'' and any point ''x'' that does not belong to ''F'', there exists a neighbourhood ''U'' of ''x'' and a neighbourhood ''V'' of ''F'' that are disjoint. Concisely put, it must be possible to separate ''x'' and ''F'' with disjoint neighborhoods. A or is a topological space that is both regular and a Hausdorff space. (A Hausdorff space or T2 space is a topological space in which any two distinct points are separated by neighbourhoods.) It turns out that a space is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monotonically Normal
In mathematics, specifically in the field of topology, a monotonically normal space is a particular kind of normal space, defined in terms of a monotone normality operator. It satisfies some interesting properties; for example metric spaces and linearly ordered spaces are monotonically normal, and every monotonically normal space is hereditarily normal. Definition A topological space X is called monotonically normal if it satisfies any of the following equivalent definitions: Definition 1 The space X is T1 and there is a function G that assigns to each ordered pair (A,B) of disjoint closed sets in X an open set G(A,B) such that: :(i) A\subseteq G(A,B)\subseteq \overline\subseteq X\setminus B; :(ii) G(A,B)\subseteq G(A',B') whenever A\subseteq A' and B'\subseteq B. Condition (i) says X is a normal space, as witnessed by the function G. Condition (ii) says that G(A,B) varies in a monotone fashion, hence the terminology ''monotonically normal''. The operator G is called a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order Topology
In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If ''X'' is a totally ordered set, the order topology on ''X'' is generated by the subbase of "open rays" :\ :\ for all ''a, b'' in ''X''. Provided ''X'' has at least two elements, this is equivalent to saying that the open intervals :(a,b) = \ together with the above rays form a base for the order topology. The open sets in ''X'' are the sets that are a union of (possibly infinitely many) such open intervals and rays. A topological space ''X'' is called orderable or linearly orderable if there exists a total order on its elements such that the order topology induced by that order and the given topology on ''X'' coincide. The order topology makes ''X'' into a completely normal Hausdorff space. The standard topologies on R, Q, Z, and N are the order topologies. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metric Topology
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Countable Compactness
In mathematics a topological space is called countably compact if every countable open cover has a finite subcover. Equivalent definitions A topological space ''X'' is called countably compact if it satisfies any of the following equivalent conditions: :(1) Every countable open cover of ''X'' has a finite subcover. :(2) Every infinite ''set'' ''A'' in ''X'' has an ω-accumulation point in ''X''. :(3) Every ''sequence'' in ''X'' has an accumulation point in ''X''. :(4) Every countable family of closed subsets of ''X'' with an empty intersection has a finite subfamily with an empty intersection. (1) \Rightarrow (2): Suppose (1) holds and ''A'' is an infinite subset of ''X'' without \omega-accumulation point. By taking a subset of ''A'' if necessary, we can assume that ''A'' is countable. Every x\in X has an open neighbourhood O_x such that O_x\cap A is finite (possibly empty), since ''x'' is ''not'' an ω-accumulation point. For every finite subset ''F'' of ''A'' define O_F = \cu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metric Space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sequential Compactness
In mathematics, a topological space ''X'' is sequentially compact if every sequence of points in ''X'' has a convergent subsequence converging to a point in X. Every metric space is naturally a topological space, and for metric spaces, the notions of compactness and sequential compactness are equivalent (if one assumes countable choice). However, there exist sequentially compact topological spaces that are not compact, and compact topological spaces that are not sequentially compact. Examples and properties The space of all real numbers with the standard topology is not sequentially compact; the sequence (s_n) given by s_n = n for all natural numbers ''n'' is a sequence that has no convergent subsequence. If a space is a metric space, then it is sequentially compact if and only if it is compact. The first uncountable ordinal with the order topology is an example of a sequentially compact topological space that is not compact. The product of 2^=\mathfrak c copies of the close ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |