Gaussian Splat Video
   HOME



picture info

Gaussian Splat Video
Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymous adjective ''Gaussian'' is pronounced . Mathematics Algebra and linear algebra Geometry and differential geometry Number theory Cyclotomic fields *Gaussian period *Gaussian rational *Gauss sum, an exponential sum over Dirichlet characters **Elliptic Gauss sum, an analog of a Gauss sum **Quadratic Gauss sum Analysis, numerical analysis, vector calculus and calculus of variations Complex analysis and convex analysis *Gauss–Lucas theorem *Gauss's continued fraction, an analytic continued fraction derived from the hypergeometric functions *Gauss's test, Gauss's criterion – described oEncyclopedia of Mathematics*Gauss's hypergeometric theorem, an identity on hypergeometric series *Gauss plane Statistics *Gaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Carl Friedrich Gauss 1840 By Jensen
Carl may refer to: *Carl, Georgia, city in USA *Carl, West Virginia, an unincorporated community *Carl (name), includes info about the name, variations of the name, and a list of people with the name *Carl², a TV series * "Carl", List of Aqua Teen Hunger Force episodes, an episode of television series ''Aqua Teen Hunger Force'' * An informal nickname for a student or alum of Carleton College CARL may refer to: *Canadian Association of Research Libraries *Colorado Alliance of Research Libraries See also

*Carle (other) *Charles *Carle, a surname *Karl (other) *Karle (other) {{disambig ja:カール zh:卡尔 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smoothly from point to point). This gives, in particular, local notions of angle, arc length, length of curves, surface area and volume. From those, some other global quantities can be derived by integral, integrating local contributions. Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "" ("On the Hypotheses on which Geometry is Based"). It is a very broad and abstract generalization of the differential geometry of surfaces in Three-dimensional space, R3. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of geodesics on them, with techniques that can be applied to the study of differentiable manifolds of higher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauss's Lemma (Riemannian Geometry)
In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let ''M'' be a Riemannian manifold, equipped with its Levi-Civita connection, and ''p'' a point of ''M''. The exponential map is a mapping from the tangent space at ''p'' to ''M'': :\mathrm : T_pM \to M which is a diffeomorphism in a neighborhood of zero. Gauss' lemma asserts that the image of a sphere of sufficiently small radius in ''T''p''M'' under the exponential map is perpendicular to all geodesics originating at ''p''. The lemma allows the exponential map to be understood as a radial isometry, and is of fundamental importance in the study of geodesic convexity and normal coordinates. Introduction We define the exponential map at p\in M by : \exp_p: T_pM\supset B_(0) \longrightarrow M,\quad vt \longmapsto \gamma_(t), where \gamma_ is the unique geodesic with \gamma_(0)=p and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gauss's Area Formula
The shoelace formula, also known as Gauss's area formula and the surveyor's formula, is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. It is called the shoelace formula because of the constant cross-multiplying for the coordinates making up the polygon, like threading shoelaces. It has applications in surveying and forestry,Hans Pretzsch, Forest Dynamics, Growth and Yield: From Measurement to Model', Springer, 2009, , p. 232. among other areas. The formula was described by Albrecht Ludwig Friedrich Meister (1724–1788) in 1769 and is based on the trapezoid formula which was described by Carl Friedrich Gauss and C.G.J. Jacobi. The triangle form of the area formula can be considered to be a special case of Green's theorem. The area formula can also be applied to self-overlapping polygons since the meaning of area is still clear even though self-overlapping polygons are not generally sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Newton Line
In Euclidean geometry the Newton line is the line that connects the midpoints of the two diagonals in a convex quadrilateral with at most two parallel sides. Properties The line segments and that connect the midpoints of opposite sides (the bimedians) of a convex quadrilateral intersect in a point that lies on the Newton line. This point bisects the line segment that connects the diagonal midpoints. By Anne's theorem and its converse, any interior point ''P'' on the Newton line of a quadrilateral has the property that : triangle ABP+ triangle CDP= triangle ADP+ triangle BCP where denotes the area of triangle . If the quadrilateral is a tangential quadrilateral, then its incenter also lies on this line. See also *Complete quadrangle In mathematics, specifically in incidence geometry and especially in projective geometry, a complete quadrangle is a system of geometric objects consisting of any four points in a plane, no three of which are on a common line, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gauss–Manin Connection
In mathematics, the Gauss–Manin connection is a connection on a certain vector bundle over a base space ''S'' of a family of algebraic varieties V_s. The fibers of the vector bundle are the de Rham cohomology groups H^k_(V_s) of the fibers V_s of the family. It was introduced by for curves ''S'' and by in higher dimensions. Flat sections of the bundle are described by differential equations; the best-known of these is the Picard–Fuchs equation, which arises when the family of varieties is taken to be the family of elliptic curves. In intuitive terms, when the family is locally trivial, cohomology classes can be moved from one fiber in the family to nearby fibers, providing the 'flat section' concept in purely topological terms. The existence of the connection is to be inferred from the flat sections. Intuition Consider a smooth morphism of schemes X\to B over characteristic 0. If we consider these spaces as complex analytic spaces, then the Ehresmann fibration theorem te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauss–Codazzi Equations
In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold. The equations were originally discovered in the context of surfaces in three-dimensional Euclidean space. In this context, the first equation, often called the Gauss equation (after its discoverer Carl Friedrich Gauss), says that the Gauss curvature of the surface, at any given point, is dictated by the derivatives of the Gauss map at that point, as encoded by the second fundamental form. The second equation, called the Codazzi equation or Codazzi-Mainardi equation, states that the covariant derivative of the second fundamental form is fully symmetric. It is named for Gaspare Mainardi (1856) and Delfino Codazzi (1868– ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Braid Theory
In mathematics, the braid group on strands (denoted B_n), also known as the Artin braid group, is the group whose elements are equivalence classes of -braids (e.g. under ambient isotopy), and whose group operation is composition of braids (see ). Example applications of braid groups include knot theory, where any knot may be represented as the closure of certain braids (a result known as Alexander's theorem); in mathematical physics where Artin's canonical presentation of the braid group corresponds to the Yang–Baxter equation (see ); and in monodromy invariants of algebraic geometry. Introduction In this introduction let ; the generalization to other values of will be straightforward. Consider two sets of four items lying on a table, with the items in each set being arranged in a vertical line, and such that one set sits next to the other. (In the illustrations below, these are the black dots.) Using four strands, each item of the first set is connected with an item of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shiing-Shen Chern
Shiing-Shen Chern (; , ; October 26, 1911 – December 3, 2004) was a Chinese American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geometry" and is widely regarded as a leader in geometry and one of the greatest mathematicians of the twentieth century, winning numerous awards and recognition including the Wolf Prize and the inaugural Shaw Prize. In memory of Shiing-Shen Chern, the International Mathematical Union established the Chern Medal in 2010 to recognize "an individual whose accomplishments warrant the highest level of recognition for outstanding achievements in the field of mathematics." Chern worked at the Institute for Advanced Study (1943–45), spent about a decade at the University of Chicago (1949-1960), and then moved to University of California, Berkeley, where he cofounded the Mathematical Sciences Research Institute in 1982 and was the institute's foun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chern–Gauss–Bonnet Theorem
In mathematics, the Chern theorem (or the Chern–Gauss–Bonnet theorem after Shiing-Shen Chern, Carl Friedrich Gauss, and Pierre Ossian Bonnet) states that the Euler–Poincaré characteristic (a topological invariant defined as the alternating sum of the Betti numbers of a topological space) of a closed manifold, closed even-dimensional Riemannian manifold is equal to the integral of a certain polynomial (the Euler class) of its Curvature of Riemannian manifolds, curvature form (an analytical invariant). It is a highly non-trivial generalization of the classic Gauss–Bonnet theorem (for 2-dimensional manifolds / Surface (mathematics), surfaces) to higher even-dimensional Riemannian manifolds. In 1943, Carl B. Allendoerfer and André Weil proved a special case for extrinsic manifolds. In a classic paper published in 1944, Shiing-Shen Chern proved the theorem in full generality connecting global topology with local geometry. The Riemann–Roch theorem and the Atiyah–Singer inde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]