Gating Mechanism
In neural networks, the gating mechanism is an architectural motif for controlling the flow of activation and gradient signals. They are most prominently used in recurrent neural networks (RNNs), but have also found applications in other architectures. RNNs Gating mechanisms are the centerpiece of long short-term memory (LSTM). They were proposed to mitigate the vanishing gradient problem often encountered by regular RNNs. An LSTM unit contains three gates: * An input gate, which controls the flow of new information into the memory cell * A forget gate, which controls how much information is retained from the previous time step * An output gate, which controls how much information is passed to the next layer. The equations for LSTM are: \begin \mathbf_t &= \sigma(\mathbf_t \mathbf_ + \mathbf_ \mathbf_ + \mathbf_i) \\ \mathbf_t &= \sigma(\mathbf_t \mathbf_ + \mathbf_ \mathbf_ + \mathbf_f) \\ \mathbf_t &= \sigma(\mathbf_t \mathbf_ + \mathbf_ \mathbf_ + \mathbf_o) \\ \tilde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neural Network (machine Learning)
In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a computational model inspired by the structure and functions of biological neural networks. A neural network consists of connected units or nodes called ''artificial neurons'', which loosely model the neurons in the brain. Artificial neuron models that mimic biological neurons more closely have also been recently investigated and shown to significantly improve performance. These are connected by ''edges'', which model the synapses in the brain. Each artificial neuron receives signals from connected neurons, then processes them and sends a signal to other connected neurons. The "signal" is a real number, and the output of each neuron is computed by some non-linear function of the sum of its inputs, called the ''activation function''. The strength of the signal at each connection is determined by a ''weight'', which adjusts during the learning process. Typically, neuron ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transformer (deep Learning Architecture)
The transformer is a deep learning architecture based on the multi-head attention mechanism, in which text is converted to numerical representations called tokens, and each token is converted into a vector via lookup from a word embedding table. At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism, allowing the signal for key tokens to be amplified and less important tokens to be diminished. Transformers have the advantage of having no recurrent units, therefore requiring less training time than earlier recurrent neural architectures (RNNs) such as long short-term memory (LSTM). Later variations have been widely adopted for training large language models (LLM) on large (language) datasets. The modern version of the transformer was proposed in the 2017 paper " Attention Is All You Need" by researchers at Google. Transformers were first developed as an improvement ov ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gated Recurrent Unit
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, but lacks a context vector or output gate, resulting in fewer parameters than LSTM. GRU's performance on certain tasks of polyphonic music modeling, speech signal modeling and natural language processing was found to be similar to that of LSTM. GRUs showed that gating is indeed helpful in general, and Bengio's team came to no concrete conclusion on which of the two gating units was better. Architecture There are several variations on the full gated unit, with gating done using the previous hidden state and the bias in various combinations, and a simplified form called minimal gated unit. The operator \odot denotes the Hadamard product in the following. Fully gated unit Initially, for t = 0, the output vector is h_0 = 0. : \begin z_t &= \s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Long Short-term Memory
Long short-term memory (LSTM) is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models, and other sequence learning methods. It aims to provide a short-term memory for RNN that can last thousands of timesteps (thus "''long'' short-term memory"). The name is made in analogy with long-term memory and short-term memory and their relationship, studied by cognitive psychologists since the early 20th century. An LSTM unit is typically composed of a cell and three gates: an input gate, an output gate, and a forget gate. The cell remembers values over arbitrary time intervals, and the gates regulate the flow of information into and out of the cell. Forget gates decide what information to discard from the previous state, by mapping the previous state and the current input to a value between 0 and 1. A (rounded) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recurrent Neural Network
Recurrent neural networks (RNNs) are a class of artificial neural networks designed for processing sequential data, such as text, speech, and time series, where the order of elements is important. Unlike feedforward neural networks, which process inputs independently, RNNs utilize recurrent connections, where the output of a neuron at one time step is fed back as input to the network at the next time step. This enables RNNs to capture temporal dependencies and patterns within sequences. The fundamental building block of RNNs is the ''recurrent unit'', which maintains a ''hidden state''—a form of memory that is updated at each time step based on the current input and the previous hidden state. This feedback mechanism allows the network to learn from past inputs and incorporate that knowledge into its current processing. RNNs have been successfully applied to tasks such as unsegmented, connected handwriting recognition, speech recognition, natural language processing, and neural ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convolutional Neural Network
A convolutional neural network (CNN) is a type of feedforward neural network that learns features via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. Convolution-based networks are the de-facto standard in deep learning-based approaches to computer vision and image processing, and have only recently been replaced—in some cases—by newer deep learning architectures such as the transformer. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by the regularization that comes from using shared weights over fewer connections. For example, for ''each'' neuron in the fully-connected layer, 10,000 weights would be required for processing an image sized 100 × 100 pixels. However, applying cascaded ''convolution'' (or cross-correlation) kernels, only 25 weights for each convolutio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Highway Network
In machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous neural networks. It uses ''skip connections'' modulated by learned gating mechanisms to regulate information flow, inspired by long short-term memory (LSTM) recurrent neural networks. The advantage of the Highway Network over other deep learning architectures is its ability to overcome or partially prevent the vanishing gradient problem, thus improving its optimization. Gating mechanisms are used to facilitate information flow across the many layers ("information highways"). Highway Networks have found use in text sequence labeling and speech recognition tasks. In 2014, the state of the art was training deep neural networks with 20 to 30 layers. Stacking too many layers led to a steep reduction in training accuracy, known as the "degradation" problem. In 2015, two techniques were developed to train such networks: the Highway Netwo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Activation Function
The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is ''nonlinear''. Modern activation functions include the logistic ( sigmoid) function used in the 2012 speech recognition model developed by Hinton et al; the ReLU used in the 2012 AlexNet computer vision model and in the 2015 ResNet model; and the smooth version of the ReLU, the GELU, which was used in the 2018 BERT model. Comparison of activation functions Aside from their empirical performance, activation functions also have different mathematical properties: ; Nonlinear: When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. This is known as the Universal Approximation Theorem. The identity activation function does not satisfy this property. W ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sigmoid Function
A sigmoid function is any mathematical function whose graph of a function, graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function, which is defined by the formula :\sigma(x) = \frac = \frac = 1 - \sigma(-x). Other sigmoid functions are given in the #Examples, Examples section. In some fields, most notably in the context of artificial neural networks, the term "sigmoid function" is used as a synonym for "logistic function". Special cases of the sigmoid function include the Gompertz curve (used in modeling systems that saturate at large values of ''x'') and the ogee curve (used in the spillway of some dams). Sigmoid functions have domain of all real numbers, with return (response) value commonly monotonically increasing but could be decreasing. Sigmoid functions most often show a return value (''y'' axis) in the range 0 to 1. Another commonly used range is from −1 to 1. A wide variety of sigmoid functions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Feedforward Neural Network
Feedforward refers to recognition-inference architecture of neural networks. Artificial neural network architectures are based on inputs multiplied by weights to obtain outputs (inputs-to-output): feedforward. Recurrent neural networks, or neural networks with loops allow information from later processing stages to feed back to earlier stages for sequence processing. However, at every stage of inference a feedforward multiplication remains the core, essential for backpropagationRumelhart, David E., Geoffrey E. Hinton, and R. J. Williams.Learning Internal Representations by Error Propagation. David E. Rumelhart, James L. McClelland, and the PDP research group. (editors), Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundation. MIT Press, 1986. or backpropagation through time. Thus neural networks cannot contain feedback like negative feedback or positive feedback where the outputs feed back to the ''very same'' inputs and modify them, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Activation Function
The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is ''nonlinear''. Modern activation functions include the logistic ( sigmoid) function used in the 2012 speech recognition model developed by Hinton et al; the ReLU used in the 2012 AlexNet computer vision model and in the 2015 ResNet model; and the smooth version of the ReLU, the GELU, which was used in the 2018 BERT model. Comparison of activation functions Aside from their empirical performance, activation functions also have different mathematical properties: ; Nonlinear: When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. This is known as the Universal Approximation Theorem. The identity activation function does not satisfy this property. W ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gated Recurrent Unit
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, but lacks a context vector or output gate, resulting in fewer parameters than LSTM. GRU's performance on certain tasks of polyphonic music modeling, speech signal modeling and natural language processing was found to be similar to that of LSTM. GRUs showed that gating is indeed helpful in general, and Bengio's team came to no concrete conclusion on which of the two gating units was better. Architecture There are several variations on the full gated unit, with gating done using the previous hidden state and the bias in various combinations, and a simplified form called minimal gated unit. The operator \odot denotes the Hadamard product in the following. Fully gated unit Initially, for t = 0, the output vector is h_0 = 0. : \begin z_t &= \s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |