Gabriel–Rosenberg Reconstruction Theorem
In algebraic geometry, the Gabriel–Rosenberg reconstruction theorem, introduced in , states that a quasi-separated scheme can be recovered from the category of quasi-coherent sheaves on it. The theorem is taken as a starting point for noncommutative algebraic geometry as the theorem says (in a sense) working with stuff on a space is equivalent to working with the space itself. It is named after Pierre Gabriel and Alexander L. Rosenberg Alexander Lvovich Rosenberg (russian: Александр Львович Розенберг, 1946–2012) was a Russian-American mathematician who worked on functional analysis, representation theory and noncommutative algebraic geometry. He gra .... See also * Tannakian duality References * External links *https://ncatlab.org/nlab/show/Gabriel-Rosenberg+theoremHow to unify various reconstruction theorems (Gabriel-Rosenberg, Tannaka,Balmers) {{DEFAULTSORT:Gabriel-Rosenberg reconstruction theorem Theorems in algebraic geometry Schem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasi-separated Morphism
In algebraic geometry, a morphism of schemes from to is called quasi-separated if the diagonal map from to is quasi-compact (meaning that the inverse image of any quasi-compact open set is quasi-compact). A scheme is called quasi-separated if the morphism to Spec is quasi-separated. Quasi-separated algebraic space In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, ...s and algebraic stacks and morphisms between them are defined in a similar way, though some authors include the condition that is quasi-separated as part of the definition of an algebraic space or algebraic stack . Quasi-separated morphisms were introduced by as a generalization of separated morphisms. All separated morphisms (and all morphisms of Noetherian schemes) are automatically quasi-separated. Quasi-separa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scheme (mathematics)
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise " Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Formally, a scheme is a topological space together with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasi-coherent Sheaf
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an abelian category, and so they are closed under operations such as taking kernels, images, and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank. Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf. Definitions A quasi-coherent sheaf on a ringed space (X, \mathcal O_X) is a sheaf \mathcal F of \mathcal O_X- modules which has a local presentation, that is, every point in X has an open neighborhood U in which there is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noncommutative Algebraic Geometry
Noncommutative algebraic geometry is a branch of mathematics, and more specifically a direction in noncommutative geometry, that studies the geometric properties of formal duals of non-commutative algebraic objects such as rings as well as geometric objects derived from them (e.g. by gluing along localizations or taking noncommutative stack quotients). For example, noncommutative algebraic geometry is supposed to extend a notion of an algebraic scheme by suitable gluing of spectra of noncommutative rings; depending on how literally and how generally this aim (and a notion of spectrum) is understood in noncommutative setting, this has been achieved in various level of success. The noncommutative ring generalizes here a commutative ring of regular functions on a commutative scheme. Functions on usual spaces in the traditional (commutative) algebraic geometry have a product defined by pointwise multiplication; as the values of these functions commute, the functions also com ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pierre Gabriel
Pierre Gabriel (1 August 1933 – 24 November 2015), also known as Peter Gabriel, was a French mathematician at the University of Strasbourg (1962–1970), University of Bonn (1970–1974) and University of Zürich (1974–1998) who worked on category theory, algebraic groups, and representation theory of algebras. He was elected a correspondent member of the French Academy of Sciences The French Academy of Sciences (French: ''Académie des sciences'') is a learned society, founded in 1666 by Louis XIV of France, Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French Scientific me ... in November 1986. His most famous result is Gabriel's theorem that provides a classification of all quivers of finite type. References External links * * Personal Web Page 1933 births 2015 deaths 20th-century French mathematicians 21st-century French mathematicians Algebraists University of Paris alumni University of Zurich facul ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexander L
Alexander is a male given name. The most prominent bearer of the name is Alexander the Great, the king of the Ancient Greek kingdom of Macedonia who created one of the largest empires in ancient history. Variants listed here are Aleksandar, Aleksander and Aleksandr. Related names and diminutives include Iskandar, Alec, Alek, Alex, Alexandre, Aleks, Aleksa and Sander; feminine forms include Alexandra, Alexandria, and Sasha. Etymology The name ''Alexander'' originates from the (; 'defending men' or 'protector of men'). It is a compound of the verb (; 'to ward off, avert, defend') and the noun (, genitive: , ; meaning 'man'). It is an example of the widespread motif of Greek names expressing "battle-prowess", in this case the ability to withstand or push back an enemy battle line. The earliest attested form of the name, is the Mycenaean Greek feminine anthroponym , , (/ Alexandra/), written in the Linear B syllabic script. Alaksandu, alternatively called ''Alakasan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tannakian Duality
In mathematics, a Tannakian category is a particular kind of monoidal category ''C'', equipped with some extra structure relative to a given field ''K''. The role of such categories ''C'' is to approximate, in some sense, the category of linear representations of an algebraic group ''G'' defined over ''K''. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory. The name is taken from Tadao Tannaka and Tannaka–Krein duality, a theory about compact groups ''G'' and their representation theory. The theory was developed first in the school of Alexander Grothendieck. It was later reconsidered by Pierre Deligne, and some simplifications made. The pattern of the theory is that of Grothendieck's Galois theory, which is a theory about finite permutation representations of groups ''G'' which are profinite groups. The gist of the theory, which is rather elaborate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorems In Algebraic Geometry
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scheme Theory
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise " Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Formally, a scheme is a topological space together with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |