G-expectation
In probability theory, the g-expectation is a nonlinear expectation based on a backwards stochastic differential equation (BSDE) originally developed by Shige Peng. Definition Given a probability space (\Omega,\mathcal,\mathbb) with (W_t)_ is a (''d''-dimensional) Wiener process (on that space). Given the filtration generated by (W_t), i.e. \mathcal_t = \sigma(W_s: s \in ,t, let X be \mathcal_T measurable. Consider the BSDE given by: : \begindY_t &= g(t,Y_t,Z_t) \, dt - Z_t \, dW_t\\ Y_T &= X\end Then the g-expectation for X is given by \mathbb^g := Y_0. Note that if X is an ''m''-dimensional vector, then Y_t (for each time t) is an ''m''-dimensional vector and Z_t is an m \times d matrix. In fact the conditional expectation is given by \mathbb^g \mid \mathcal_t:= Y_t and much like the formal definition for conditional expectation it follows that \mathbb^g _\mid_\mathcal_t.html" ;"title="_A \mathbb^g[X \mid \mathcal_t">_A \mathbb^g[X \mid \mathcal_t = \mathbb^g[1_A X/math> ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Time Consistent
Time consistency in the context of finance is the property of not having mutually contradictory evaluations of risk at different points in time. This property implies that if investment A is considered riskier than B at some future time, then A will also be considered riskier than B at every prior time. Time consistency and financial risk Time consistency is a property in financial risk related to dynamic risk measures. The purpose of the time the consistent property is to categorize the risk measures which satisfy the condition that if portfolio (A) is riskier than portfolio (B) at some time in the future, then it is guaranteed to be riskier at any time prior to that point. This is an important property since if it were not to hold then there is an event (with probability of occurring greater than 0) such that B is riskier than A at time t although it is certain that A is riskier than B at time t+1. As the name suggests a time inconsistent risk measure can lead to inconsist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shige Peng
Peng Shige (, born December 8, 1947 in Binzhou, Shandong) is a Chinese mathematician noted for his contributions in stochastic analysis and mathematical finance. Biography Peng Shige was born in Binzhou and raised in Shandong, while his parents' hometown is Haifeng County in south-eastern Guangdong, he is a grandnephew of the famous revolutionary Peng Pai, and his grandfather (Peng Pai's brother) is also recognized a "revolutionary martyr" by the nation. He went to a countryside working with farmers as an "Educated youth" from 1968 to 1971, and studied in the Department of Physics, Shandong University from 1971 to 1974 and went to work at the Institute of Mathematics, Shandong University in 1978. In 1983 he took an opportunity to enter Paris Dauphine University, France under the supervision of Alain Bensoussan, who was a student of Jacques-Louis Lions. He obtained his PhDs from Paris Dauphine University in 1985 and from University of Provence in 1986. Then he returned ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonlinear Expectation
In probability theory, a nonlinear expectation is a nonlinear generalization of the expectation. Nonlinear expectations are useful in utility theory as they more closely match human behavior than traditional expectations. The common use of nonlinear expectations is in assessing risks under uncertainty. Generally, nonlinear expectations are categorized into sub-linear and super-linear expectations dependent on the additive properties of the given sets. Much of the study of nonlinear expectation is attributed to work of mathematicians within the past two decades. Definition A functional \mathbb: \mathcal \to \mathbb (where \mathcal is a vector lattice on a probability space) is a nonlinear expectation if it satisfies: # Monotonicity: if X,Y \in \mathcal such that X \geq Y then \mathbb \geq \mathbb /math> # Preserving of constants: if c \in \mathbb then \mathbb = c The complete consideration of the given set, the linear space for the functions given that set, and the nonlinear expect ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lp Space
In mathematics, the spaces are function spaces defined using a natural generalization of the -norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz . spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, economics, finance, engineering, and other disciplines. Applications Statistics In statistics, measures of central tendency and statistical dispersion, such as the mean, median, and standard deviation, are defined in terms of metrics, and measures of central tendency can be characterized as solutions to variational problems. In penalized regression, "L1 penalty" and "L2 penalty" refer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Risk Measure
In financial mathematics, a risk measure is used to determine the amount of an asset or set of assets (traditionally currency) to be kept in reserve. The purpose of this reserve is to make the risks taken by financial institutions, such as banks and insurance companies, acceptable to the regulator. In recent years attention has turned towards convex and coherent risk measurement. Mathematically A risk measure is defined as a mapping from a set of random variables to the real numbers. This set of random variables represents portfolio returns. The common notation for a risk measure associated with a random variable X is \rho(X). A risk measure \rho: \mathcal \to \mathbb \cup \ should have certain properties: ; Normalized : \rho(0) = 0 ; Translative : \mathrm\; a \in \mathbb \; \mathrm \; Z \in \mathcal ,\;\mathrm\; \rho(Z + a) = \rho(Z) - a ; Monotone : \mathrm\; Z_1,Z_2 \in \mathcal \;\mathrm\; Z_1 \leq Z_2 ,\; \mathrm \; \rho(Z_2) \leq \rho(Z_1) Set-valued In a situatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Choquet Expectation
A Choquet integral is a subadditive or superadditive integral created by the French mathematician Gustave Choquet in 1953. It was initially used in statistical mechanics and potential theory, but found its way into decision theory in the 1980s, where it is used as a way of measuring the expected utility of an uncertain event. It is applied specifically to membership functions and capacities. In imprecise probability theory, the Choquet integral is also used to calculate the lower expectation induced by a 2-monotone lower probability, or the upper expectation induced by a 2-alternating upper probability. Using the Choquet integral to denote the expected utility of belief functions measured with capacities is a way to reconcile the Ellsberg paradox and the Allais paradox. Definition The following notation is used: * S – a set. * \mathcal – a collection of subsets of S. * f : S\to \mathbb – a function. * \nu : \mathcal\to \mathbb^+ – a monotone set function. Assume t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Expected Value
In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a large number of independently selected outcomes of a random variable. The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration. The expected value of a random variable is often denoted by , , or , with also often stylized as or \mathbb. History The idea of the expected value originated in the middle of the 17th century from the study of the so-called problem of points, which seeks to divide the stakes ''in a fair way'' between two players, who have to e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lipschitz Continuous
In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the ''Lipschitz constant'' of the function (or '' modulus of uniform continuity''). For instance, every function that has bounded first derivatives is Lipschitz continuous. In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem. We have the following chain of stri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\in A, and \mathbf_(x)=0 otherwise, where \mathbf_A is a common notation for the indicator function. Other common notations are I_A, and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, :\mathbf_(x)= \in A For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition The indicator function of a subset of a set is a function \mathbf_A \colon X \to \ defined as \mathbf_A(x) := \begin 1 ~&\text~ x \in A~, \\ 0 ~&\text~ x \notin A~. \end The Iverson bracket provides the equivalent notation, \in A/math> or to be used instead of \mathbf_(x)\,. The function \mathbf_A is sometimes denoted , , , or even just . ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Adapted Process
In the study of stochastic processes, an adapted process (also referred to as a non-anticipating or non-anticipative process) is one that cannot "see into the future". An informal interpretation is that ''X'' is adapted if and only if, for every realisation and every ''n'', ''Xn'' is known at time ''n''. The concept of an adapted process is essential, for instance, in the definition of the Itō integral, which only makes sense if the integrand is an adapted process. Definition Let * (\Omega, \mathcal, \mathbb) be a probability space; * I be an index set with a total order \leq (often, I is \mathbb, \mathbb_0, , T/math> or filtration of the sigma algebra \mathcal; * (S,\Sigma) be a measurable space, the ''state space''; * X: I \times \Omega \to S be a stochastic process. The process X is said to be adapted to the filtration \left(\mathcal_i\right)_ if the random variable X_i: \Omega \to S is a (\mathcal_i, \Sigma)-measurable function for each i \in I. Examples Consider a stochasti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conditional Expectation
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value – the value it would take “on average” over an arbitrarily large number of occurrences – given that a certain set of "conditions" is known to occur. If the random variable can take on only a finite number of values, the “conditions” are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space. Depending on the context, the conditional expectation can be either a random variable or a function. The random variable is denoted E(X\mid Y) analogously to conditional probability. The function form is either denoted E(X\mid Y=y) or a separate function symbol such as f(y) is introduced with the meaning E(X\mid Y) = f(Y). Examples Example 1: Dice rolling Consider the roll of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |