HOME
*





Fraction (floating Point Number)
The significand (also mantissa or coefficient, sometimes also argument, or ambiguously fraction or characteristic) is part of a number in scientific notation or in floating-point representation, consisting of its significant digits. Depending on the interpretation of the exponent, the significand may represent an integer or a fraction. Example The number 123.45 can be represented as a decimal floating-point number with the integer 12345 as the significand and a 10−2 power term, also called characteristics, where −2 is the exponent (and 10 is the base). Its value is given by the following arithmetic: : 123.45 = 12345 × 10−2. The same value can also be represented in normalized form with 1.2345 as the fractional coefficient, and +2 as the exponent (and 10 as the base): : 123.45 = 1.2345 × 10+2. Schmid, however, called this representation with a significand ranging between 1.0 and 10 a modified normalized form. For base 2, this 1.xxxx form is also called a normaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scientific Notation
Scientific notation is a way of expressing numbers that are too large or too small (usually would result in a long string of digits) to be conveniently written in decimal form. It may be referred to as scientific form or standard index form, or standard form in the United Kingdom. This base ten notation is commonly used by scientists, mathematicians, and engineers, in part because it can simplify certain arithmetic operations. On scientific calculators it is usually known as "SCI" display mode. In scientific notation, nonzero numbers are written in the form or ''m'' times ten raised to the power of ''n'', where ''n'' is an integer, and the coefficient ''m'' is a nonzero real number (usually between 1 and 10 in absolute value, and nearly always written as a terminating decimal). The integer ''n'' is called the exponent and the real number ''m'' is called the '' significand'' or ''mantissa''. The term "mantissa" can be ambiguous where logarithms are involved, because it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Double-precision Floating-point Format
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. Floating point is used to represent fractional values, or when a wider range is needed than is provided by fixed point (of the same bit width), even if at the cost of precision. Double precision may be chosen when the range or precision of single precision would be insufficient. In the IEEE 754-2008 standard, the 64-bit base-2 format is officially referred to as binary64; it was called double in IEEE 754-1985. IEEE 754 specifies additional floating-point formats, including 32-bit base-2 ''single precision'' and, more recently, base-10 representations. One of the first programming languages to provide single- and double-precision floating-point data types was Fortran. Before the widespread adoption of IEEE 754-1985, the representation a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mantissa (floating Point Number)
The significand (also mantissa or coefficient, sometimes also argument, or ambiguously fraction or characteristic) is part of a number in scientific notation or in floating-point representation, consisting of its significant digits. Depending on the interpretation of the exponent, the significand may represent an integer or a fraction. Example The number 123.45 can be represented as a decimal floating-point number with the integer 12345 as the significand and a 10−2 power term, also called characteristics, where −2 is the exponent (and 10 is the base). Its value is given by the following arithmetic: : 123.45 = 12345 × 10−2. The same value can also be represented in normalized form with 1.2345 as the fractional coefficient, and +2 as the exponent (and 10 as the base): : 123.45 = 1.2345 × 10+2. Schmid, however, called this representation with a significand ranging between 1.0 and 10 a modified normalized form. For base 2, this 1.xxxx form is also called a normaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floating Decimal Point
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be represented as a base-ten floating-point number: 12.345 = \underbrace_\text \times \underbrace_\text\!\!\!\!\!\!^ In practice, most floating-point systems use base two, though base ten ( decimal floating point) is also common. The term ''floating point'' refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation. A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




The Macmillan Company
Macmillan Inc. is a defunct American book publishing company. Originally established as the American division of the British Macmillan Publishers, the two were later separated and acquired by other companies, with the remnants of the original American division of Macmillan present in McGraw-Hill Education's Macmillan/McGraw-Hill textbooks, Gale's Macmillan Reference USA division, and some trade imprints of Simon & Schuster that were transferred when both companies were owned by Paramount Communications. The German publisher Holtzbrinck, which bought the British Macmillan in 1999, purchased US rights to the Macmillan name in 2001 and rebranded its American division with it in 2007. History Brett family George Edward Brett opened the first Macmillan office in the United States in 1869 and Macmillan sold its U.S. operations to the Brett family, George Platt Brett Sr. and George Platt Brett Jr. in 1896, resulting in the creation of an American company, Macmillan Publishing. Ev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IEEE 754-1985
IEEE 754-1985 was an industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. During its 23 years, it was the most widely used format for floating-point computation. It was implemented in software, in the form of floating-point libraries, and in hardware, in the instructions of many CPUs and FPUs. The first integrated circuit to implement the draft of what was to become IEEE 754-1985 was the Intel 8087. IEEE 754-1985 represents numbers in binary, providing definitions for four levels of precision, of which the two most commonly used are: The standard also defines representations for positive and negative infinity, a "negative zero", five exceptions to handle invalid results like division by zero, special values called NaNs for representing those exceptions, denormal numbers to represent numbers smaller than shown above, and four round ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mantissa (logarithm)
In mathematics, the common logarithm is the logarithm with base 10. It is also known as the decadic logarithm and as the decimal logarithm, named after its base, or Briggsian logarithm, after Henry Briggs, an English mathematician who pioneered its use, as well as standard logarithm. Historically, it was known as ''logarithmus decimalis'' or ''logarithmus decadis''. It is indicated by , , or sometimes with a capital (however, this notation is ambiguous, since it can also mean the complex natural logarithmic multi-valued function). On calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when they write "log". To mitigate this ambiguity, the ISO 80000 specification recommends that should be written , and should be . Before the early 1970s, handheld electronic calculators were not available, and mechanical calculators capable of multiplication were bulky, expensive and not wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Donald E
Donald is a masculine given name derived from the Gaelic name ''Dòmhnall''.. This comes from the Proto-Celtic *''Dumno-ualos'' ("world-ruler" or "world-wielder"). The final -''d'' in ''Donald'' is partly derived from a misinterpretation of the Gaelic pronunciation by English speakers, and partly associated with the spelling of similar-sounding Germanic names, such as ''Ronald''. A short form of ''Donald'' is ''Don''. Pet forms of ''Donald'' include ''Donnie'' and ''Donny''. The feminine given name ''Donella'' is derived from ''Donald''. ''Donald'' has cognates in other Celtic languages: Modern Irish ''Dónal'' (anglicised as ''Donal'' and ''Donall'');. Scottish Gaelic ''Dòmhnall'', ''Domhnull'' and ''Dòmhnull''; Welsh '' Dyfnwal'' and Cumbric ''Dumnagual''. Although the feminine given name '' Donna'' is sometimes used as a feminine form of ''Donald'', the names are not etymologically related. Variations Kings and noblemen Domnall or Domhnall is the name of many a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The Art Of Computer Programming
''The Art of Computer Programming'' (''TAOCP'') is a comprehensive monograph written by the computer scientist Donald Knuth presenting programming algorithms and their analysis. Volumes 1–5 are intended to represent the central core of computer programming for sequential machines. When Knuth began the project in 1962, he originally conceived of it as a single book with twelve chapters. The first three volumes of what was then expected to be a seven-volume set were published in 1968, 1969, and 1973. Work began in earnest on Volume 4 in 1973, but was suspended in 1977 for work on typesetting prompted by the second edition of Volume 2. Writing of the final copy of Volume 4A began in longhand in 2001, and the first online pre-fascicle, 2A, appeared later in 2001. The first published installment of Volume 4 appeared in paperback as Fascicle 2 in 2005. The hardback Volume 4A, combining Volume 4, Fascicles 0–4, was published in 2011. Volume 4, Fascicle 6 ("Satisfiability") was r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Kahan
William "Velvel" Morton Kahan (born June 5, 1933) is a Canadian mathematician and computer scientist, who received the Turing Award in 1989 for "''his fundamental contributions to numerical analysis''", was named an ACM Fellow in 1994, and inducted into the National Academy of Engineering in 2005. Biography Born to a Canadian Jewish family, he attended the University of Toronto, where he received his bachelor's degree in 1954, his master's degree in 1956, and his Ph.D. in 1958, all in the field of mathematics. Kahan is now emeritus professor of mathematics and of electrical engineering and computer sciences (EECS) at the University of California, Berkeley. Kahan was the primary architect behind the IEEE 754-1985 standard for floating-point computation (and its radix-independent follow-on, IEEE 854). He has been called "The Father of Floating Point", since he was instrumental in creating the original IEEE 754 specification. Kahan continued his contributions to the IEEE 754 rev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Common Logarithm
In mathematics, the common logarithm is the logarithm with base 10. It is also known as the decadic logarithm and as the decimal logarithm, named after its base, or Briggsian logarithm, after Henry Briggs, an English mathematician who pioneered its use, as well as standard logarithm. Historically, it was known as ''logarithmus decimalis'' or ''logarithmus decadis''. It is indicated by , , or sometimes with a capital (however, this notation is ambiguous, since it can also mean the complex natural logarithmic multi-valued function). On calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when they write "log". To mitigate this ambiguity, the ISO 80000 specification recommends that should be written , and should be . Before the early 1970s, handheld electronic calculators were not available, and mechanical calculators capable of multiplication were bulky, expensive and not wide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computer Scientist
A computer scientist is a person who is trained in the academic study of computer science. Computer scientists typically work on the theoretical side of computation, as opposed to the hardware side on which computer engineers mainly focus (although there is overlap). Although computer scientists can also focus their work and research on specific areas (such as algorithm and data structure development and design, software engineering, information theory, database theory, computational complexity theory, numerical analysis, programming language theory, computer graphics, and computer vision), their foundation is the theoretical study of computing from which these other fields derive. A primary goal of computer scientists is to develop or validate models, often mathematical, to describe the properties of computational systems (processors, programs, computers interacting with people, computers interacting with other computers, etc.) with an overall objective of discovering d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]