Finite-difference Frequency-domain Method
   HOME



picture info

Finite-difference Frequency-domain Method
The finite-difference frequency-domain (FDFD) method is a numerical solution method for problems usually in electromagnetism and sometimes in acoustics, based on finite-difference approximations of the derivative operators in the differential equation being solved. While "FDFD" is a generic term describing all frequency-domain finite-difference methods, the title seems to mostly describe the method as applied to scattering problems. The method shares many similarities to the finite-difference time-domain (FDTD) method, so much so that the literature on FDTD can be directly applied. The method works by transforming Maxwell's equations (or other partial differential equation) for sources and fields at a constant frequency into matrix form Ax = b. The matrix ''A'' is derived from the wave equation operator, the column vector ''x'' contains the field components, and the column vector ''b'' describes the source. The method is capable of incorporating anisotropic materials, but off- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffraction Of Plane Wave From Plasmonic Slit
Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the Wave propagation, propagating wave. Diffraction is the same physical effect as Wave interference, interference, but interference is typically applied to superposition of a few waves and the term diffraction is used when many waves are superposed. Italian scientist Francesco Maria Grimaldi coined the word ''diffraction'' and was the first to record accurate observations of the phenomenon in 1660 in science, 1660. In classical physics, the diffraction phenomenon is described by the Huygens–Fresnel principle that treats each point in a propagating wavefront as a collection of individual spherical wavelets. The characteristic pattern is most pronounced when a wave from a Coherence (physics), coherent source (such as a laser) encounters a slit/aperture tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE