HOME
*





Extreme Points
In mathematics, an extreme point of a convex set S in a real or complex vector space is a point in S which does not lie in any open line segment joining two points of S. In linear programming problems, an extreme point is also called vertex or corner point of S. Definition Throughout, it is assumed that X is a real or complex vector space. For any p, x, y \in X, say that p x and y if x \neq y and there exists a 0 < t < 1 such that p = t x + (1-t) y. If K is a subset of X and p \in K, then p is called an of K if it does not lie between any two points of K. That is, if there does exist x, y \in K and 0 < t < 1 such that x \neq y and p = t x + (1-t) y. The set of all extreme points of K is denoted by \operatorname(K). Generalizations If S is a subset of a vector space then a linear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Extreme Points
In mathematics, an extreme point of a convex set S in a real or complex vector space is a point in S which does not lie in any open line segment joining two points of S. In linear programming problems, an extreme point is also called vertex or corner point of S. Definition Throughout, it is assumed that X is a real or complex vector space. For any p, x, y \in X, say that p x and y if x \neq y and there exists a 0 < t < 1 such that p = t x + (1-t) y. If K is a subset of X and p \in K, then p is called an of K if it does not lie between any two points of K. That is, if there does exist x, y \in K and 0 < t < 1 such that x \neq y and p = t x + (1-t) y. The set of all extreme points of K is denoted by \operatorname(K). Generalizations If S is a subset of a vector space then a linear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Krein–Milman Theorem
In the mathematical theory of functional analysis, the Krein–Milman theorem is a proposition about compact convex sets in locally convex topological vector spaces (TVSs). This theorem generalizes to infinite-dimensional spaces and to arbitrary compact convex sets the following basic observation: a convex (i.e. "filled") triangle, including its perimeter and the area "inside of it", is equal to the convex hull of its three vertices, where these vertices are exactly the extreme points of this shape. This observation also holds for any other convex polygon in the plane \R^2. Statement and definitions Preliminaries and definitions Throughout, X will be a real or complex vector space. For any elements x and y in a vector space, the set , y:= \ is called the or closed interval between x and y. The or open interval between x and y is (x, x) := \varnothing when x = y while it is (x, y) := \ when x \neq y; it satisfies (x, y) = , y\setminus \ and , y= (x, y) \cup \. The point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strictly Convex Set
In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment (possibly empty). For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary of a convex set is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval with the property that its epigraph (the set of points on or above the graph of the function) is a convex set. Convex minimization is a subfield of optimization that studies the problem of minimizing convex functions over convex sets. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Vector Space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also continuous functions. Such a topology is called a and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space (although this article does not). One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs. Many topological vector spaces are spaces of functions, or linear operators acting o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Barycenter
In astronomy, the barycenter (or barycentre; ) is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important concept in fields such as astronomy and astrophysics. The distance from a body's center of mass to the barycenter can be calculated as a two-body problem. If one of the two orbiting bodies is much more massive than the other and the bodies are relatively close to one another, the barycenter will typically be located within the more massive object. In this case, rather than the two bodies appearing to orbit a point between them, the less massive body will appear to orbit about the more massive body, while the more massive body might be observed to wobble slightly. This is the case for the Earth–Moon system, whose barycenter is located on average from Earth's center, which is 75% of Earth's radius of . When the two bodies are of similar ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Measure
In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more general notion of measure (which includes concepts like area or volume) is that a probability measure must assign value 1 to the entire probability space. Intuitively, the additivity property says that the probability assigned to the union of two disjoint events by the measure should be the sum of the probabilities of the events; for example, the value assigned to "1 or 2" in a throw of a dice should be the sum of the values assigned to "1" and "2". Probability measures have applications in diverse fields, from physics to finance and biology. Definition The requirements for a function \mu to be a probability measure on a probability space are that: * \mu must return results in the unit interval , 1 returning 0 for the empty set and 1 f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gerald Edgar
Gerald is a male Germanic given name meaning "rule of the spear" from the prefix ''ger-'' ("spear") and suffix ''-wald'' ("rule"). Variants include the English given name Jerrold, the feminine nickname Jeri and the Welsh language Gerallt and Irish language Gearalt. Gerald is less common as a surname. The name is also found in French as Gérald. Geraldine is the feminine equivalent. Given name People with the name Gerald include: Politicians * Gerald Boland, Ireland's longest-serving Minister for Justice * Gerald Ford, 38th President of the United States * Gerald Gardiner, Baron Gardiner, Lord Chancellor from 1964 to 1970 * Gerald Häfner, German MEP * Gerald Klug, Austrian politician * Gerald Lascelles (other), several people * Gerald Nabarro, British Conservative politician * Gerald S. McGowan, US Ambassador to Portugal * Gerald Wellesley, 7th Duke of Wellington, British diplomat, soldier, and architect Sports * Gerald Asamoah, Ghanaian-born German football player * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bounded Set
:''"Bounded" and "boundary" are distinct concepts; for the latter see boundary (topology). A circle in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. In mathematical analysis and related areas of mathematics, a set is called bounded if it is, in a certain sense, of finite measure. Conversely, a set which is not bounded is called unbounded. The word 'bounded' makes no sense in a general topological space without a corresponding metric. A bounded set is not necessarily a closed set and vise versa. For example, a subset ''S'' of a 2-dimensional real space R''2'' constrained by two parabolic curves ''x''2 + 1 and ''x''2 - 1 defined in a Cartesian coordinate system is a closed but is not bounded (unbounded). Definition in the real numbers A set ''S'' of real numbers is called ''bounded from above'' if there exists some real number ''k'' (not necessarily in ''S'') such that ''k'' ≥ '' s'' for all ''s'' in ''S''. The number ''k'' i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Set
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold. Equivalent definitions By definition, a subset A of a topological space (X, \tau) is called if its complement X \setminus A is an open subset of (X, \tau); that is, if X \setminus A \in \tau. A set is closed in X if and only if it is equal to its closure in X. Equivalently, a set is closed if and only if it contains all of its limit points. Yet another equivalent definition is that a set is closed if and only if it contains all of its boundary points. Every subset A \subseteq X is always contained in its (topological) closure in X, which is denoted by \operatorname_X A; that is, if A \subseteq X then A \subseteq \o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joram Lindenstrauss
Joram Lindenstrauss ( he, יורם לינדנשטראוס) (October 28, 1936 – April 29, 2012) was an Israeli mathematician working in functional analysis. He was a professor of mathematics at the Einstein Institute of Mathematics. Biography Joram Lindenstrauss was born in Tel Aviv. He was the only child of a pair of lawyers who immigrated to Israel from Berlin. He began to study mathematics at the Hebrew University of Jerusalem in 1954 while serving in the army. He became a full-time student in 1956 and received his master's degree in 1959. In 1962 Lindenstrauss earned his Ph.D. from the Hebrew University (dissertation: ''Extension of Compact Operators'', advisors: Aryeh Dvoretzky, Branko Grünbaum). He worked as a postdoc at Yale University and the University of Washington in Seattle from 1962 - 1965. He was appointed senior lecturer at the Hebrew University in 1965, associate professor on 1967 and full professor in 1969. He became the Leon H. and Ada G. Miller Memoria ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radon–Nikodym Property
In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions. Definition Let (X, \Sigma, \mu) be a measure space, and B be a Banach space. The Bochner integral of a function f : X \to B is defined in much the same way as the Lebesgue integral. First, define a simple function to be any finite sum of the form s(x) = \sum_^n \chi_(x) b_i where the E_i are disjoint members of the \sigma-algebra \Sigma, the b_i are distinct elements of B, and χE is the characteristic function of E. If \mu\left(E_i\right) is finite whenever b_i \neq 0, then the simple function is integrable, and the integral is then defined by \int_X \left sum_^n \chi_(x) b_i\right, d\mu = \sum_^n \mu(E_i) b_i exactly as it is for the ordinary Lebesgue integral. A measurable function f : X \to B is Bochner integrable if there exists a sequence of integrable simple functions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]