HOME
*





Eoxin
Eoxins are proposed to be a family of proinflammatory eicosanoids (signaling compounds that regulate inflammatory and immune responses). They are produced by human eosinophils (a class of white blood cells), mast cells, the L1236 Reed–Sternberg cell line derived from Hodgkin's lymphoma, and certain other tissues. These cells produce the eoxins by initially metabolizing arachidonic acid, an omega-6 (ω-6) fatty acid, via any enzyme possessing 15-lipoxygenase activity. The product of this initial metabolic step, 15(S)-hydroperoxyeicosatetraenoic acid, is then converted to a series of eoxins by the same enzymes that metabolize the 5-lipoxygenase product of arachidonic acid metabolism, i.e. 5-Hydroperoxy-eicosatetraenoic acid to a series of leukotrienes. That is, the eoxins are 14,15-disubstituted analogs of the 5,6-disubstituted leukotrienes. A closely related set of 15-lipoxygenase metabolites are derived from anandamide (i.e. arachidonic acid containing ethanolamine esterifi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


15-Hydroxyicosatetraenoic Acid
15-Hydroxyeicosatetraenoic acid (also termed 15-HETE, 15(''S'')-HETE, and 15''S''-HETE) is an eicosanoid, i.e. a metabolite of arachidonic acid. Various cell types metabolize arachidonic acid to 15(''S'')-hydroperoxyeicosatetraenoic acid (15(''S'')-HpETE). This initial hydroperoxide product is extremely short-lived in cells: if not otherwise metabolized, it is rapidly reduced to 15''(S)''-HETE. Both of these metabolites, depending on the cell type which forms them, can be further metabolized to 15-oxo-eicosatetraenoic acid (15-oxo-ETE), 5''S'',15''S''-dihydroxy-eicosatetraenoic acid (5(''S''),15(''S'')-diHETE), 5-oxo-15(''S'')-hydroxyeicosatetraenoic acid (5-oxo-15(''S'')-HETE, a subset of specialized pro-resolving mediators viz., the lipoxins, a class of pro-inflammatory mediators, the eoxins, and other products that have less well-defined activities and functions. Thus, 15(''S'')-HETE and 15(''S'')-HpETE, in addition to having intrinsic biological activities, are key precursors ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


15-Hydroxyeicosatetraenoic Acid
15-Hydroxyeicosatetraenoic acid (also termed 15-HETE, 15(''S'')-HETE, and 15''S''-HETE) is an eicosanoid, i.e. a metabolite of arachidonic acid. Various cell types metabolize arachidonic acid to 15(''S'')-hydroperoxyeicosatetraenoic acid (15(''S'')-HpETE). This initial hydroperoxide product is extremely short-lived in cells: if not otherwise metabolized, it is rapidly reduced to 15''(S)''-HETE. Both of these metabolites, depending on the cell type which forms them, can be further metabolized to 15-oxo-eicosatetraenoic acid (15-oxo-ETE), 5''S'',15''S''-dihydroxy-eicosatetraenoic acid (5(''S''),15(''S'')-diHETE), 5-oxo-15(''S'')-hydroxyeicosatetraenoic acid (5-oxo-15(''S'')-HETE, a subset of specialized pro-resolving mediators viz., the lipoxins, a class of pro-inflammatory mediators, the eoxins, and other products that have less well-defined activities and functions. Thus, 15(''S'')-HETE and 15(''S'')-HpETE, in addition to having intrinsic biological activities, are key precursors ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eicosanoid
Eicosanoids are signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids (PUFAs) that are, similar to arachidonic acid, around 20 carbon units in length. Eicosanoids are a sub-category of oxylipins, i.e. oxidized fatty acids of diverse carbon units in length, and are distinguished from other oxylipins by their overwhelming importance as cell signaling molecules. Eicosanoids function in diverse physiological systems and pathological processes such as: mounting or inhibiting inflammation, allergy, fever and other immune responses; regulating the abortion of pregnancy and normal childbirth; contributing to the perception of pain; regulating cell growth; controlling blood pressure; and modulating the regional flow of blood to tissues. In performing these roles, eicosanoids most often act as autocrine signaling agents to impact their cells of origin or as paracrine signaling agents to impact cells in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eoxin D4
Eoxin D4, also known as 14,15-leukotriene D4, is an eoxin. Cells make eoxins by metabolizing arachidonic acid with a 15-lipoxygenase enzyme to form 15(''S'')-hydroperoxyeicosapentaenoic acid (i.e. 15(''S'')-HpETE). This product is then converted serially to eoxin A4 (i.e. EXA4), EXC4, EXD4, and EXE4 by LTC4 synthase, an unidentified gamma-glutamyltransferase, and an unidentified dipeptidase, respectively, in a pathway which appears similar if not identical to the pathway which forms leukotreines, i.e. LTA4, LTC4, LTD4, and LTE4. This pathway is schematically shown as follows: EXA4 is viewed as an intracellular-bound, short-lived intermediate which is rapidly metabolized to the down-stream eoxins. The eoxins down stream of EXA4 are secreted from their parent cells and, it is proposed but not yet proven, serve to regulate allergic responses and the development of certain cancers (see Eoxins Eoxins are proposed to be a family of proinflammatory eicosanoids (signaling compou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Eoxin A4
Eoxin A4, also known as 14,15-leukotriene A4, is an eoxin. Cells make eoxins by metabolizing arachidonic acid with a 15-lipoxygenase enzyme to form 15(''S'')-hydroperoxyeicosapentaenoic acid (i.e. 15(''S'')-HpETE). This product is then converted serially to eoxin A4 (i.e. EXA4), EXC4, EXD4, and EXE4 by LTC4 synthase, an unidentified gamma-glutamyltransferase, and an unidentified dipeptidase, respectively, in a pathway which appears similar if not identical to the pathway which forms leukotreines, i.e. LTA4, LTC4, LTD4, and LTE4. This pathway is schematically shown as follows: EXA4 is viewed as an intracellular-bound, short-lived intermediate which is rapidly metabolized to the down-stream eoxins. The eoxins down stream of EXA4 are secreted from their parent cells and, it is proposed but not yet proven, serve to regulate allergic responses and the development of certain cancers (see Eoxins Eoxins are proposed to be a family of proinflammatory eicosanoids (signaling compou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eoxin C4
Eoxin C4, also known as 14,15-leukotriene C4, is an eoxin. Cells make eoxins by metabolizing arachidonic acid with a 15-lipoxygenase enzyme to form 15(''S'')-hydroperoxyeicosapentaenoic acid (i.e. 15(''S'')-HpETE). This product is then converted serially to eoxin A4 (i.e. EXA4), EXC4, EXD4, and EXE4 by LTC4 synthase, an unidentified gamma-glutamyltransferase, and an unidentified dipeptidase, respectively, in a pathway which appears similar if not identical to the pathway which forms leukotreines, i.e. LTA4, LTC4, LTD4, and LTE4. This pathway is schematically shown as follows: EXA4 is viewed as an intracellular-bound, short-lived intermediate which is rapidly metabolized to the down-stream eoxins. The eoxins down stream of EXA4 are secreted from their parent cells and, it is proposed but not yet proven, serve to regulate allergic responses and the development of certain cancers (see Eoxins Eoxins are proposed to be a family of proinflammatory eicosanoids (signaling compou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

15-lipoxygenase
ALOX15 (also termed arachidonate 15-lipoxygenase, 15-lipoxygenase-1, 15-LO-1, 15-LOX-1) is, like other lipoxygenases, a seminal enzyme in the metabolism of polyunsaturated fatty acids to a wide range of physiologically and pathologically important products. ▼ Gene Function Kelavkar and Badr (1999) stated that the ALOX15 gene product is implicated in antiinflammation, membrane remodeling, and cancer development/metastasis. Kelavkar and Badr (1999) described experiments yielding data that supported the hypothesis that loss of the TP53 gene, or gain-of-function activities resulting from the expression of its mutant forms, regulates ALOX15 promoter activity in human and in mouse, albeit in directionally opposite manners. These studies defined a direct link between ALOX15 gene activity and an established tumor-suppressor gene located in close chromosomal proximity. Kelavkar and Badr (1999) referred to this as evidence that 15-lipoxygenase is a mutator gene. ▼ Mapping By PCR anal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eoxin E4
Eoxin E4, also known as 14,15-leukotriene E4, is an eoxin. Cells make eoxins by metabolizing arachidonic acid with a 15-lipoxygenase enzyme to form 15(''S'')-hydroperoxyeicosapentaenoic acid (i.e. 15(''S'')-HpETE). This product is then converted serially to eoxin A4 (i.e. EXA4), EXC4, EXD4, and EXE4 by LTC4 synthase, an unidentified gamma-glutamyltransferase, and an unidentified dipeptidase, respectively, in a pathway which appears similar if not identical to the pathway which forms leukotreines, i.e. LTA4, LTC4, LTD4, and LTE4. This pathway is schematically shown as follows: EXA4 is viewed as an intracellular-bound, short-lived intermediate which is rapidly metabolized to the down-stream eoxins. The eoxins down stream of EXA4 are secreted from their parent cells and, it is proposed but not yet proven, serve to regulate allergic responses and the development of certain cancers (see Eoxins Eoxins are proposed to be a family of proinflammatory eicosanoids (signaling compou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ALOX15
ALOX15 (also termed arachidonate 15-lipoxygenase, 15-lipoxygenase-1, 15-LO-1, 15-LOX-1) is, like other lipoxygenases, a seminal enzyme in the metabolism of polyunsaturated fatty acids to a wide range of physiologically and pathologically important products. ▼ Gene Function Kelavkar and Badr (1999) stated that the ALOX15 gene product is implicated in antiinflammation, membrane remodeling, and cancer development/metastasis. Kelavkar and Badr (1999) described experiments yielding data that supported the hypothesis that loss of the TP53 gene, or gain-of-function activities resulting from the expression of its mutant forms, regulates ALOX15 promoter activity in human and in mouse, albeit in directionally opposite manners. These studies defined a direct link between ALOX15 gene activity and an established tumor-suppressor gene located in close chromosomal proximity. Kelavkar and Badr (1999) referred to this as evidence that 15-lipoxygenase is a mutator gene. ▼ Mapping By PCR anal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arachidonic Acid
Arachidonic acid (AA, sometimes ARA) is a polyunsaturated omega-6 fatty acid 20:4(ω-6), or 20:4(5,8,11,14). It is structurally related to the saturated arachidic acid found in cupuaçu butter. Its name derives from the New Latin word ''arachis'' (peanut), but peanut oil does not contain any arachidonic acid. Chemistry In chemical structure, arachidonic acid is a carboxylic acid with a 20-carbon chain and four '' cis''- double bonds; the first double bond is located at the sixth carbon from the omega end. Some chemistry sources define 'arachidonic acid' to designate any of the eicosatetraenoic acids. However, almost all writings in biology, medicine, and nutrition limit the term to ''all cis''-5,8,11,14-eicosatetraenoic acid. Biology Arachidonic acid is a polyunsaturated fatty acid present in the phospholipids (especially phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositides) of membranes of the body's cells, and is abundant in the brain, muscl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Leukotriene
Leukotrienes are a family of eicosanoid inflammatory mediators produced in leukocytes by the oxidation of arachidonic acid (AA) and the essential fatty acid eicosapentaenoic acid (EPA) by the enzyme arachidonate 5-lipoxygenase. Leukotrienes use lipid signaling to convey information to either the cell producing them (autocrine signaling) or neighboring cells (paracrine signaling) in order to regulate immune responses. The production of leukotrienes is usually accompanied by the production of histamine and prostaglandins, which also act as inflammatory mediators. One of their roles (specifically, leukotriene D4) is to trigger contractions in the smooth muscles lining the bronchioles; their overproduction is a major cause of inflammation in asthma and allergic rhinitis. Leukotriene antagonists are used to treat these disorders by inhibiting the production or activity of leukotrienes. History and name The name ''leukotriene'', introduced by Swedish biochemist Bengt Samuelss ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LTA4
Leukotriene A4 (LTA4) is a leukotriene, and is the precursor for the productions of LTB4 ( leukotriene B)) and LTC4 (leukotriene C4). Biosynthesis of Leukotriene A4 Following the biosynthesis of eicosanoid, triggered as a result of infection or inflammation, the resulting arachidonic acid substrate is released from the cell membrane phospholipid will enter the lipooxygenase pathway to produce Leukotriene A4. In this pathway, arachidonic acid is converted into 5-hydroperoxyeicosatetraenoic acid (5-HPETE) as a result of a catalytic complex consisting of the enzyme 5-lipoxygenase (5-LO) and FLAP ( 5-Lipoxygenase-activating protein) in the presence of ATP and Calcium ions. The resulting 5-HPETE yields the unstable allylic epoxide substrate LTA4 which is quickly hydrolyzed by the LTA4H ( Leukotriene A4 hydrolase) enzyme to produce LTB4, or synthesized by LTC4S ( Leukotriene C4 synthase) with the addition of glutathione to produce LTC4 which can be further metabolized to produce LTD4 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]