HOME
*





Electromagnetic Four-potential
An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, As measured in a given frame of reference, and for a given gauge, the first component of the electromagnetic four-potential is conventionally taken to be the electric scalar potential, and the other three components make up the magnetic vector potential. While both the scalar and vector potential depend upon the frame, the electromagnetic four-potential is Lorentz covariant. Like other potentials, many different electromagnetic four-potentials correspond to the same electromagnetic field, depending upon the choice of gauge. This article uses tensor index notation and the Minkowski metric sign convention . See also covariance and contravariance of vectors and raising and lowerin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vector Potential
In vector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a ''scalar potential'', which is a scalar field whose gradient is a given vector field. Formally, given a vector field v, a ''vector potential'' is a C^2 vector field A such that \mathbf = \nabla \times \mathbf. Consequence If a vector field v admits a vector potential A, then from the equality \nabla \cdot (\nabla \times \mathbf) = 0 (divergence of the curl is zero) one obtains \nabla \cdot \mathbf = \nabla \cdot (\nabla \times \mathbf) = 0, which implies that v must be a solenoidal vector field. Theorem Let \mathbf : \R^3 \to \R^3 be a solenoidal vector field which is twice continuously differentiable. Assume that decreases at least as fast as 1/\, \mathbf\, for \, \mathbf\, \to \infty . Define \mathbf (\mathbf) = \frac \int_ \frac \, d^3\mathbf. Then, A is a vector potential for , that is, \nabla \times \mathbf =\mathbf. Here, \nabla_y \time ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maxwell's Equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields.''Electric'' and ''magnetic'' fields, according to the theory of relativity, are the components of a single electromagnetic field. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inertial Frame Of Reference
In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. It is a frame in which an isolated physical object — an object with zero net force acting on it — is perceived to move with a constant velocity (it might be a zero velocity) or, equivalently, it is a frame of reference in which Newton's first law of motion holds. All inertial frames are in a state of constant, rectilinear motion with respect to one another; in other words, an accelerometer moving with any of them would detect zero acceleration. It has been observed that celestial objects which are far away from other objects and which are in uniform motion with respect to the cosmic microwave background radiation maintain such uniform motion. Measurements in one inertial frame can be converted to measurements in another by a si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lorenz Gauge Condition
In electromagnetism, the Lorenz gauge condition or Lorenz gauge, for Ludvig Lorenz, is a partial gauge fixing of the electromagnetic vector potential by requiring \partial_\mu A^\mu = 0. The name is frequently confused with Hendrik Lorentz, who has given his name to many concepts in this field. The condition is Lorentz invariant. The condition does not completely determine the gauge: one can still make a gauge transformation A^\mu \to A^\mu + \partial^\mu f, where \partial^\mu is the four-gradient and f is a harmonic scalar function (that is, a scalar function satisfying \partial_\mu\partial^\mu f = 0, the equation of a massless scalar field). The Lorenz condition is used to eliminate the redundant spin-0 component in the representation theory of the Lorentz group. It is equally used for massive spin-1 fields where the concept of gauge transformations does not apply at all. Description In electromagnetism, the Lorenz condition is generally used in calculations of time-depend ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Four-gradient
In differential geometry, the four-gradient (or 4-gradient) \boldsymbol is the four-vector analogue of the gradient \vec from vector calculus. In special relativity and in quantum mechanics, the four-gradient is used to define the properties and relations between the various physical four-vectors and tensors. Notation This article uses the metric signature. SR and GR are abbreviations for special relativity and general relativity respectively. c indicates the speed of light in vacuum. \eta_ = \operatorname ,-1,-1,-1/math> is the flat spacetime metric of SR. There are alternate ways of writing four-vector expressions in physics: * The four-vector style can be used: \mathbf \cdot \mathbf, which is typically more compact and can use vector notation, (such as the inner product "dot"), always using bold uppercase to represent the four-vector, and bold lowercase to represent 3-space vectors, e.g. \vec \cdot \vec. Most of the 3-space vector rules have analogues in four-vector mathe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Electromagnetic Tensor
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below. Definition The electromagnetic tensor, conventionally labelled ''F'', is defined as the exterior derivative of the electromagnetic four-potential, ''A'', a differential 1-form: :F \ \stackrel\ \mathrmA. Therefore, ''F'' is a differential 2-form—that is, an antisymmetric rank-2 tensor field—on Minkowski space. In component form, :F_ = \partial_\mu A_\nu - \partial_\nu A_\mu. where \partial is the four-gradient and A is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system. Tensors have become important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as mechanics ( stress, elasticity, fluid mechanics, moment of inertia, ...), electrodynamics (electromagnetic tensor, Maxwell tensor, permittivity, magnetic susceptibility, ...), general relativity (stress–energy tensor, c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lorentz Transformations
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz. The most common form of the transformation, parametrized by the real constant v, representing a velocity confined to the -direction, is expressed as \begin t' &= \gamma \left( t - \frac \right) \\ x' &= \gamma \left( x - v t \right)\\ y' &= y \\ z' &= z \end where and are the coordinates of an event in two frames with the origins coinciding at 0, where the primed frame is seen from the unprimed frame as moving with speed along the -axis, where is the speed of light, and \gamma = \left ( \sqrt\right )^ is the Lorentz factor. When speed is much smaller than , the Lorentz factor is negligibly different from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Special Relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws of physics are invariant (that is, identical) in all inertial frames of reference (that is, frames of reference with no acceleration). # The speed of light in vacuum is the same for all observers, regardless of the motion of the light source or the observer. Origins and significance Special relativity was originally proposed by Albert Einstein in a paper published on 26 September 1905 titled "On the Electrodynamics of Moving Bodies".Albert Einstein (1905)''Zur Elektrodynamik bewegter Körper'', ''Annalen der Physik'' 17: 891; English translatioOn the Electrodynamics of Moving Bodiesby George Barker Jeffery and Wilfrid Perrett (1923); Another English translation On the Electrodynamics of Moving Bodies by Megh Nad Saha (1920). The in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Centimeter
330px, Different lengths as in respect to the Electromagnetic spectrum, measured by the Metre and its deriveds scales. The Microwave are in-between 1 meter to 1 millimeter. A centimetre (international spelling) or centimeter (American spelling) (SI symbol cm) is a Units of measurement, unit of length in the International System of Units (SI), equal to one hundredth of a metre, ''centi'' being the SI prefix for a factor of . The centimetre was the base unit of length in the now deprecated centimetre–gram–second (CGS) system of units. Though for many physical quantities, SI prefixes for factors of 103—like ''milli-'' and ''kilo-''—are often preferred by technicians, the centimetre remains a practical unit of length for many everyday measurements. A centimetre is approximately the width of the fingernail of an average adult person. Equivalence to other units of length : One millilitre is defined as one cubic centimetre, under the SI system of units. Other uses In ad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maxwell (unit)
The maxwell (symbol: Mx) is the CGS (centimetre–gram–second) unit of magnetic flux (). History The unit name honours James Clerk Maxwell, who presented a unified theory of electromagnetism. The ''maxwell'' was recommended as a CGS unit at the International Electrical Congress held in 1900 at Paris. This practical unit was previously called a ''line'', reflecting Faraday's conception of the magnetic field as curved lines of magnetic force, which he designated as ''line of magnetic induction''. ''Kiloline'' (103 line) and ''megaline'' (106 line) were sometimes used because 1 line was very small relative to the phenomena that it was used to measure. The ''maxwell'' was affirmed again unanimously as the unit name for magnetic flux at the Plenary Meeting of the International Electrotechnical Commission (IEC) in July 1930 at Oslo. In 1933, the Electric and Magnetic Magnitudes and Units committee of the IEC recommended to adopt the metre–kilogram–second ( MKS) system (Giorgi s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]