Explained Variance
In statistics, explained variation measures the proportion to which a mathematical model accounts for the variation ( dispersion) of a given data set. Often, variation is quantified as variance; then, the more specific term explained variance can be used. The complementary part of the total variation is called unexplained or residual variation; likewise, when discussing variance as such, this is referred to as unexplained or residual variance. Definition in terms of information gain Information gain by better modelling Following Kent (1983), we use the Fraser information (Fraser 1965) :F(\theta) = \int \textrmr\,g(r)\,\ln f(r;\theta) where g(r) is the probability density of a random variable R\,, and f(r;\theta)\, with \theta\in\Theta_i (i=0,1\,) are two families of parametric models. Model family 0 is the simpler one, with a restricted parameter space \Theta_0\subset\Theta_1. Parameters are determined by maximum likelihood estimation, :\theta_i = \operatorname_ F(\theta). ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments. When census data (comprising every member of the target population) cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Dispersion (statistics)
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered. Dispersion is contrasted with location or central tendency, and together they are the most used properties of distributions. Measures of statistical dispersion A measure of statistical dispersion is a nonnegative real number that is zero if all the data are the same and increases as the data become more diverse. Most measures of dispersion have the same units as the quantity being measured. In other words, if the measurements are in metres or seconds, so is the measure of dispersion. Examples of dispersion measures include: * Standard deviation * Interquartile ra ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Variance
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by \sigma^2, s^2, \operatorname(X), V(X), or \mathbb(X). An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for example, the variance of a sum of uncorrelated random variables is equal to the sum of their variances. A disadvantage of the variance for practical applications is that, unlike the standard deviation, its units differ from the random variable, which is why the standard devi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Fraction Of Variance Unexplained
In statistics, the fraction of variance unexplained (FVU) in the context of a regression task is the fraction of variance of the regressand (dependent variable) ''Y'' which cannot be explained, i.e., which is not correctly predicted, by the explanatory variables ''X''. Formal definition Suppose we are given a regression function f yielding for each y_i an estimate \widehat_i = f(x_i) where x_i is the vector of the ''i''th observations on all the explanatory variables. We define the fraction of variance unexplained (FVU) as: :\begin \text & = = = \left( = 1- , \text\right) \\ pt & = 1 - R^2 \end where ''R''2 is the coefficient of determination and ''VAR''err and ''VAR''tot are the variance of the residuals and the sample variance of the dependent variable. ''SS''''err'' (the sum of squared predictions errors, equivalently the residual sum of squares), ''SS''''tot'' (the total sum of squares), and ''SS''''reg'' (the sum of squares of the regression, equivalently the explaine ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Residual (statistics)
In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the '' estimated'' value of the quantity of interest (for example, a sample mean). The distinction is most important in regression analysis, where the concepts are sometimes called the regression errors and regression residuals and where they lead to the concept of studentized residuals. In econometrics, "errors" are also called disturbances. Introduction Suppose there is a series of observations from a univariate distribution and we want to estimate the mean of that distribution (the so-called location model). In this case, the errors are ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Biometrika
''Biometrika'' is a peer-reviewed scientific journal published by Oxford University Press for the Biometrika Trust. The editor-in-chief is Paul Fearnhead (Lancaster University). The principal focus of this journal is theoretical statistics. It was established in 1901 and originally appeared quarterly. It changed to three issues per year in 1977 but returned to quarterly publication in 1992. History ''Biometrika'' was established in 1901 by Francis Galton, Karl Pearson, and Raphael Weldon to promote the study of biometrics. The history of ''Biometrika'' is covered by Cox (2001). The name of the journal was chosen by Pearson, but Francis Edgeworth insisted that it be spelt with a "k" and not a "c". Since the 1930s, it has been a journal for statistical theory and methodology. Galton's role in the journal was essentially that of a patron and the journal was run by Pearson and Weldon and after Weldon's death in 1906 by Pearson alone until he died in 1936. In the early days, the Ameri ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Maximum Likelihood Estimation
In statistics, maximum likelihood estimation (MLE) is a method of estimation theory, estimating the Statistical parameter, parameters of an assumed probability distribution, given some observed data. This is achieved by Mathematical optimization, maximizing a likelihood function so that, under the assumed statistical model, the Realization (probability), observed data is most probable. The point estimate, point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference. If the likelihood function is Differentiable function, differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a linear regression model maximizes the likelihood when ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Linear Regression
In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A model with exactly one explanatory variable is a ''simple linear regression''; a model with two or more explanatory variables is a multiple linear regression. This term is distinct from multivariate linear regression, which predicts multiple correlated dependent variables rather than a single dependent variable. In linear regression, the relationships are modeled using linear predictor functions whose unknown model parameters are estimation theory, estimated from the data. Most commonly, the conditional mean of the response given the values of the explanatory variables (or predictors) is assumed to be an affine function of those values; less commonly, the conditional median or some other quantile is used. Like all forms of regression analysis, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Coefficient Of Determination
In statistics, the coefficient of determination, denoted ''R''2 or ''r''2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s). It is a statistic used in the context of statistical models whose main purpose is either the prediction of future outcomes or the testing of hypotheses, on the basis of other related information. It provides a measure of how well observed outcomes are replicated by the model, based on the proportion of total variation of outcomes explained by the model. There are several definitions of ''R''2 that are only sometimes equivalent. In simple linear regression (which includes an intercept), ''r''2 is simply the square of the sample ''correlation coefficient'' (''r''), between the observed outcomes and the observed predictor values. If additional regressors are included, ''R''2 is the square of the '' coefficient of multiple correlation''. In both such cases, the coeffi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Pearson Product-moment Correlation Coefficient
In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations. As a simple example, one would expect the age and height of a sample of children from a school to have a Pearson correlation coefficient significantly greater than 0, but less than 1 (as 1 would represent an unrealistically perfect correlation). Naming and history It was developed by Karl Pearson from a related idea introduced by Francis Galton in the 1880s, and for which the mathematical formula was derived and published by Auguste Bravais in 1844. The naming ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Principal Component Analysis
Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified. The principal components of a collection of points in a real coordinate space are a sequence of p unit vectors, where the i-th vector is the direction of a line that best fits the data while being orthogonal to the first i-1 vectors. Here, a best-fitting line is defined as one that minimizes the average squared perpendicular distance from the points to the line. These directions (i.e., principal components) constitute an orthonormal basis in which different individual dimensions of the data are linearly uncorrelated. Many studies use the first two principal components in order to plot the data in two dimensions and to visually identi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Analysis Of Variance
Analysis of variance (ANOVA) is a family of statistical methods used to compare the Mean, means of two or more groups by analyzing variance. Specifically, ANOVA compares the amount of variation ''between'' the group means to the amount of variation ''within'' each group. If the between-group variation is substantially larger than the within-group variation, it suggests that the group means are likely different. This comparison is done using an F-test. The underlying principle of ANOVA is based on the law of total variance, which states that the total variance in a dataset can be broken down into components attributable to different sources. In the case of ANOVA, these sources are the variation between groups and the variation within groups. ANOVA was developed by the statistician Ronald Fisher. In its simplest form, it provides a statistical test of whether two or more population means are equal, and therefore generalizes the Student's t-test#Independent two-sample t-test, ''t''- ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |