HOME





Ernst Steinitz
Ernst Steinitz (13 June 1871 – 29 September 1928) was a German mathematician. Biography Steinitz was born in Laurahütte ( Siemianowice Śląskie), Silesia, Germany (now in Poland), the son of Sigismund Steinitz, a Jewish coal merchant, and his wife Auguste Cohen; he had two brothers. He studied at the University of Breslau and the University of Berlin, receiving his Ph.D. from Breslau in 1894. Subsequently, he took positions at Charlottenburg (now Technische Universität Berlin), Breslau, and the University of Kiel, Germany, where he died in 1928. Steinitz married Martha Steinitz and had one son. Mathematical works Steinitz's 1894 thesis was on the subject of projective configurations; it contained the result that any abstract description of an incidence structure of three lines per point and three points per line could be realized as a configuration of straight lines in the Euclidean plane with the possible exception of one of the lines. His thesis also contains th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Old Jewish Cemetery, Wrocław
The Old Jewish Cemetery () is a historic necropolis-museum situated on 37/39 Ślężna Street, in the southern part of Wrocław (formerly Breslau), Poland. Opened in 1856, the cemetery's eclectic layout features many architectural forms and styles on a monumental scale. The current shape of the cemetery evolved mostly throughout the 19th century, during the times of the German Empire. The first burial took place in what was then the village of Gabitz (Gajowice), just outside city limits. The cemetery area was then expanded twice. In 1943, the burial ceremonies were abandoned and the necropolis was leased for five years to a gardening center. During World War II, the cemetery became a fierce battleground, the marks of which are still visible on many tombstones. It was inscribed into the register of city monuments in 1975. Architecture Most of the cemetery objects were built in second half of the 19th century. They imitate various architectural styles including Ancient, the Midd ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Charlottenburg
Charlottenburg () is a Boroughs and localities of Berlin, locality of Berlin within the borough of Charlottenburg-Wilmersdorf. Established as a German town law, town in 1705 and named after Sophia Charlotte of Hanover, Queen consort of Kingdom of Prussia, Prussia, it is best known for Charlottenburg Palace - the largest surviving such royal palace in Berlin - and the adjacent museums. Charlottenburg was an independent city to the west of Berlin until 1920 when it was incorporated into "Greater Berlin Act, Groß-Berlin" (Greater Berlin) and transformed into a borough. In the course of Berlin's 2001 administrative reform it was merged with the former borough of Wilmersdorf becoming a part of a new borough called Charlottenburg-Wilmersdorf. Later, in 2004, the new borough's districts were rearranged, dividing the former borough of Charlottenburg into the localities of Charlottenburg proper, Westend (Berlin), Westend and Charlottenburg-Nord. Geography Charlottenburg is located in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable Extension
In field theory (mathematics), field theory, a branch of algebra, an algebraic field extension E/F is called a separable extension if for every \alpha\in E, the minimal polynomial (field theory), minimal polynomial of \alpha over is a separable polynomial (i.e., its formal derivative is not the zero polynomial, or equivalently it has no repeated zero of a function, roots in any extension field).Isaacs, p. 281 There is also a more general definition that applies when is not necessarily algebraic over . An extension that is not separable is said to be ''inseparable''. Every algebraic extension of a field (mathematics), field of characteristic (algebra)#Case of fields, characteristic zero is separable, and every algebraic extension of a finite field is separable.Isaacs, Theorem 18.11, p. 281 It follows that most extensions that are considered in mathematics are separable. Nevertheless, the concept of separability is important, as the existence of inseparable extensions is the main ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Extension
In abstract algebra, a normal extension is an Algebraic extension, algebraic field extension ''L''/''K'' for which every irreducible polynomial over ''K'' that has a zero of a function, root in ''L'' splits into linear factors over ''L''. This is one of the conditions for an algebraic extension to be a Galois extension. Nicolas Bourbaki, Bourbaki calls such an extension a quasi-Galois extension. For Finite extension, finite extensions, a normal extension is identical to a splitting field. Definition Let ''L/K'' be an algebraic extension (i.e., ''L'' is an algebraic extension of ''K''), such that L\subseteq \overline (i.e., ''L'' is contained in an algebraic closure of ''K''). Then the following conditions, any of which can be regarded as a definition of normal extension, are equivalent: * Every Embedding (field theory), embedding of ''L'' in \overline over ''K'' induces an automorphism of ''L''. * ''L'' is the splitting field of a family of polynomials in K[X]. * Every irreducibl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Field Extension
In mathematics, particularly in algebra, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ''L''. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry. Subfield A subfield K of a field L is a subset K\subseteq L that is a field with respect to the field operations inherited from L. Equivalently, a subfield is a subset that contains the multiplicative identity 1, and is closed under the operations of addition, subtraction, multiplication, and taking the inverse of a nonzero element of K. As , the latter definition implies K and L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcendence Degree
In mathematics, a transcendental extension L/K is a field extension such that there exists an element in the field L that is transcendental over the field K; that is, an element that is not a root of any univariate polynomial with coefficients in K. In other words, a transcendental extension is a field extension that is not algebraic. For example, \mathbb and \mathbb are both transcendental extensions of \mathbb. A transcendence basis of a field extension L/K (or a transcendence basis of L over K) is a maximal algebraically independent subset of L over K. Transcendence bases share many properties with bases of vector spaces. In particular, all transcendence bases of a field extension have the same cardinality, called the transcendence degree of the extension. Thus, a field extension is a transcendental extension if and only if its transcendence degree is nonzero. Transcendental extensions are widely used in algebraic geometry. For example, the dimension of an algebraic varie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Field
In algebra, a field ''k'' is perfect if any one of the following equivalent conditions holds: * Every irreducible polynomial over ''k'' has no multiple roots in any field extension ''F/k''. * Every irreducible polynomial over ''k'' has non-zero formal derivative. * Every irreducible polynomial over ''k'' is separable. * Every finite extension of ''k'' is separable. * Every algebraic extension of ''k'' is separable. * Either ''k'' has characteristic 0, or, when ''k'' has characteristic , every element of ''k'' is a ''p''th power. * Either ''k'' has characteristic 0, or, when ''k'' has characteristic , the Frobenius endomorphism is an automorphism of ''k''. * The separable closure of ''k'' is algebraically closed. * Every reduced commutative ''k''-algebra ''A'' is a separable algebra; i.e., A \otimes_k F is reduced for every field extension ''F''/''k''. (see below) Otherwise, ''k'' is called imperfect. In particular, all fields of characteristic zero and all finite fields ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Field
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straightedge. Galois theory, devoted to understanding the symmetries of field extensions, provides an elegant proof of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Crelle's Journal
''Crelle's Journal'', or just ''Crelle'', is the common name for a mathematics journal, the ''Journal für die reine und angewandte Mathematik'' (in English: ''Journal for Pure and Applied Mathematics''). History The journal was founded by August Leopold Crelle (Berlin) in 1826 and edited by him until his death in 1855. It was one of the first major mathematical journals that was not a proceedings of an academy. It has published many notable papers, including works of Niels Henrik Abel, Georg Cantor, Gotthold Eisenstein, Carl Friedrich Gauss and Otto Hesse. It was edited by Carl Wilhelm Borchardt from 1856 to 1880, during which time it was known as ''Borchardt's Journal''. The current editor-in-chief is Daniel Huybrechts ( Rheinische Friedrich-Wilhelms-Universität Bonn). Past editors * 1826–1856: August Leopold Crelle * 1856–1880: Carl Wilhelm Borchardt * 1881–1888: Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a Germa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

German Language
German (, ) is a West Germanic language in the Indo-European language family, mainly spoken in Western Europe, Western and Central Europe. It is the majority and Official language, official (or co-official) language in Germany, Austria, Switzerland, and Liechtenstein. It is also an official language of Luxembourg, German-speaking Community of Belgium, Belgium and the Italian autonomous province of South Tyrol, as well as a recognized national language in Namibia. There are also notable German-speaking communities in other parts of Europe, including: Poland (Upper Silesia), the Czech Republic (North Bohemia), Denmark (South Jutland County, North Schleswig), Slovakia (Krahule), Germans of Romania, Romania, Hungary (Sopron), and France (European Collectivity of Alsace, Alsace). Overseas, sizeable communities of German-speakers are found in the Americas. German is one of the global language system, major languages of the world, with nearly 80 million native speakers and over 130 mi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]