Elabela
ELABELA (ELA, Apela, Toddler) is a hormonal peptide that in humans is encoded by the ''APELA'' gene. Elabela is one of two endogenous ligands for the G-protein-coupled APLNR receptor. Ela is secreted by certain cell types including human embryonic stem cells. It is widely expressed in various developing organs such as the blastocyst, placenta, heart, kidney, endothelium, and is circulating in human plasma. Discovery Elabela is a micropeptide that was identified in 2013 by Professor Bruno Reversade's team. Biosynthesis Elabela gene encodes a pre-proprotein of 54 amino acids, with a signal peptide in the N-terminal region. After translocation into the endoplasmic reticulum and cleavage of the signal peptide, the proprotein of 32 amino acids may generate several active fragments. Physiological functions The sites of APLNR receptor expression are linked to the different functions played by Elabela in the organism. Despite that, Elabela is capable of signaling independen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bruno Reversade
Bruno Reversade (born 1978) is an American human geneticist and developmental biologist . He is a Director of the Institute of Molecular and Cellular Biology and the Genome Institute of Singapore at A*STAR (Singapore) and holds several faculty positions at other universities. Reversade is known for identifying mutated genes that cause Mendelian diseases, for his research on the genetics of identical twins and for the characterizations of novel hormones. Early life and education Bruno Reversade was born in 1974 into a French-American family. He was raised in Grenoble (France) and Washington, D.C. ( US). Bruno Reversade studied at the University Joseph Fourier, Pierre and Marie Curie University and UCLA. Scientific career Reversade became interested in developmental biology in 1997 when studying at the University of Western Ontario (Canada) under the tutelage of Greg Kelly. He earned his master's degree at the Pasteur Institute (Paris, France), where he studied head developmen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Micropeptide
Micropeptides (also referred to as microproteins) are polypeptides with a length of less than 100-150 amino acids that are encoded by short open reading frames (sORFs). In this respect, they differ from many other active small polypeptides, which are produced through the posttranslational Proteolysis, cleavage of larger polypeptides. In terms of size, micropeptides are considerably shorter than "canonical" proteins, which have an average length of 330 and 449 amino acids in prokaryotes and eukaryotes, respectively. Micropeptides are sometimes named according to their genomic location. For example, the translated product of an upstream open reading frame (uORF) might be called a uORF-encoded peptide (uPEP). Micropeptides lack an N-terminal signaling sequences, suggesting that they are likely to be localized to the cytoplasm. However, some micropeptides have been found in other cell compartments, as indicated by the existence of Transmembrane domain, transmembrane micropeptides. They ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Apelin Receptor
The Apelin Receptor (APLNR, also known as APJ) is a G protein-coupled receptor. APLNR possesses two endogenous ligands which are APELIN and ELABELA ELABELA (ELA, Apela, Toddler) is a hormonal peptide that in humans is encoded by the ''APELA'' gene. Elabela is one of two endogenous ligands for the G-protein-coupled APLNR receptor. Ela is secreted by certain cell types including human embry .... The structure of APLNR was resolved in 2017 References Further reading * * * * * * * * * * * * * * * * * * External links * * * {{gene-11-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Peptide
Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. Peptides fall under the broad chemical classes of biological polymers and oligomers, alongside nucleic acids, oligosaccharides, polysaccharides, and others. Proteins consist of one or more polypeptides arranged in a biologically functional way, often bound to ligands such as coenzymes and cofactors, to another protein or other macromolecule such as DNA or RNA, or to complex macromolecular assemblies. Amino acids that have been incorporated into peptides are termed residues. A water molecule is released during formation of each amide bond.. All peptides except cyclic peptides have an N-terminal (amine group) and C-terminal (carboxyl g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pluripotency
Cell potency is a cell's ability to differentiate into other cell types. The more cell types a cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell, which like a continuum, begins with totipotency to designate a cell with the most differentiation potential, pluripotency, multipotency, oligopotency, and finally unipotency. Totipotency Totipotency () is the ability of a single cell to divide and produce all of the differentiated cells in an organism. Spores and zygotes are examples of totipotent cells. In the spectrum of cell potency, totipotency represents the cell with the greatest differentiation potential, being able to differentiate into any embryonic cell, as well as any extraembryonic tissue cell. In contrast, pluripotent cells can only differentiate into embryonic cells. A fully differentiated cell can return to a state of totipotency. The conversion to totipotency is complex and not fully ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Autocrine Signaling
Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with paracrine signaling, intracrine signaling, or classical endocrine signaling. Examples An example of an autocrine agent is the cytokine interleukin-1 in monocytes. When interleukin-1 is produced in response to external stimuli, it can bind to cell-surface receptors on the same cell that produced it. Another example occurs in activated T cell lymphocytes, i.e., when a T cell is induced to mature by binding to a peptide: MHC complex on a professional antigen-presenting cell and by the B7:CD28 costimulatory signal. Upon activation, "low-affinity" IL-2 receptors are replaced by "high-affinity" IL-2 receptors consisting of α, β, and γ chains. The cell then releases IL-2, which binds to its own new IL-2 receptors, causing self-stimulatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paracrine Signaling
In cellular biology, paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance (local action), as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the circulatory system; juxtacrine interactions; and autocrine signaling. Cells that produce paracrine factors secrete them into the immediate extracellular environment. Factors then travel to nearby cells in which the gradient of factor received determines the outcome. However, the exact distance that paracrine factors can travel is not certain. Although paracrine signaling elicits a diverse array of responses in the induced cells, most paracrine factors utilize a relatively streamlined set of receptors and pathways. In fact, different organs in the body - ev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
PI3K/AKT/mTOR Pathway
The PI3K/AKT/mTOR pathway is an intracellular signaling pathway important in regulating the cell cycle. Therefore, it is directly related to cellular quiescence, proliferation, cancer, and longevity. PI3K activation phosphorylates and activates AKT, localizing it in the plasma membrane. AKT can have a number of downstream effects such as activating CREB, inhibiting p27, localizing FOXO in the cytoplasm, activating PtdIns-3ps, and activating mTOR which can affect transcription of p70 or 4EBP1. There are many known factors that enhance the PI3K/AKT pathway including EGF, shh, IGF-1, insulin, and calmodulin. Both leptin and insulin recruit PI3K signalling for metabolic regulation. The pathway is antagonized by various factors including PTEN, GSK3B, and HB9. In many cancers, this pathway is overactive, thus reducing apoptosis and allowing proliferation. This pathway is necessary, however, to promote growth and proliferation over differentiation of adult stem cells, neura ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Notochord
The notochord is an elastic, rod-like structure found in chordates. In vertebrates the notochord is an embryonic structure that disintegrates, as the vertebrae develop, to become the nucleus pulposus in the intervertebral discs of the vertebral column. In non-vertebrate chordates a notochord persists. The notochord is derived from the embryonic mesoderm and consists of an inner core of vacuolated cells filled with glycoproteins, covered by two helical collagen-elastin sheaths. It lies longitudinally along the rostral-caudal (head to tail) axis of the body, dorsal to the gut tube, and ventral to the dorsal nerve cord. Some chordate invertebrates, such as tunicates, develop a notochord during the larval stage but lose it through subsequent stages into adulthood. The notochord is important for signaling the dorso-ventral patterning of cells coming from the mesodermal progenitors. This helps form the precursors needed for certain organs and the embryo to develop ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oct-4
Oct-4 ( octamer-binding transcription factor 4), also known as POU5F1 ( POU domain, class 5, transcription factor 1), is a protein that in humans is encoded by the ''POU5F1'' gene. Oct-4 is a homeodomain transcription factor of the POU family. It is critically involved in the self-renewal of undifferentiated embryonic stem cells. As such, it is frequently used as a marker for undifferentiated cells. Oct-4 expression must be closely regulated; too much or too little will cause differentiation of the cells. Octamer-binding transcription factor 4, OCT-4, is a transcription factor protein that is encoded by the ''POU5F1'' gene and is part of the POU (Pit-Oct-Unc) family. OCT-4 consists of an octamer motif, a particular DNA sequence of AGTCAAAT that binds to their target genes and activates or deactivates certain expressions. These gene expressions then lead to phenotypic changes in stem cell differentiation during the development of a mammalian embryo. It plays a vital role i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zebrafish
The zebrafish (''Danio rerio'') is a species of freshwater ray-finned fish belonging to the family Danionidae of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (and thus often called a " tropical fish" although it is both tropical and subtropical). The zebrafish is an important and widely used vertebrate model organism in scientific research, particularly developmental biology, but also gene function, oncology, teratology, and drug development, in particular pre-clinical development. It is also notable for its regenerative abilities, and has been modified by researchers to produce many transgenic strains. Taxonomy The zebrafish is a derived member of the genus '' Brachydanio'', of the family Cyprinidae. It has a sister-group relationship with '' Danio aesculapii''. Zebrafish are also closely related to the genus '' Devario'', as demonstrated by a phylogenetic tree of close species. Distri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |