HOME
*





Egalitarian Equivalence
Egalitarian equivalence (EE) is a criterion of fair division. In an egalitarian-equivalent division, there exists a certain "reference bundle" Z such that each agent feels that his/her share is equivalent to Z. The EE fairness principle is usually combined with Pareto efficiency. A PEEEA is an allocation that is both Pareto efficient and egalitarian-equivalent. Definition A set of resources are divided among several agents such that every agent i receives a bundle X_i. Every agent i has a subjective preference relation \succeq_i which is a total order over bundle. These preference relations induce an equivalence relation in the usual way: X \sim_i Y iff X \succeq_i Y \succeq_i X. An allocation is called ''egalitarian-equivalent'' if there exists a bundle Z such that, for all i: :::X_i \sim_i Z An allocation is called ''PEEEA'' if it is both Pareto-efficient and egalitarian-equivalent. Motivation The EE criterion was introduced by Elisha Pazner and David Schmeidler in 197 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fair Division
Fair division is the problem in game theory of dividing a set of resources among several people who have an entitlement to them so that each person receives their due share. That problem arises in various real-world settings such as division of inheritance, partnership dissolutions, divorce settlements, electronic frequency allocation, airport traffic management, and exploitation of Earth observation satellites. It is an active research area in mathematics, economics (especially social choice theory), dispute resolution, etc. The central tenet of fair division is that such a division should be performed by the players themselves, maybe using a mediator but certainly not an arbiter as only the players really know how they value the goods. The archetypal fair division algorithm is divide and choose. It demonstrates that two agents with different tastes can divide a cake such that each of them believes that he got the best piece. The research in fair division can be seen as an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Herve Moulin
Herve (; li, Herf; wa, Heve) is a city and municipality of Wallonia located in the province of Liège, Belgium. On January 1, 2018 Herve had a total population of 17,598. The total area is which gives a population density of . It is famed for its Herve cheese. Municipal merger Since January 1, 1977, the municipality consists of the following districts: , , , , , Herve, and Xhendelesse. Herve is currently constituted of 11 villages: Battice, Bolland, Bruyères, Chaineux, Charneux, Grand-Rechain, Herve, José, Julémont, Manaihant, Xhendelesse. There are a number of smaller villages in the Herve region, such as Hacboister (district of Bolland). Architecture * ''The Church of St John the Baptist'': built in the 17th century. The tower, with a height of , dates back to the 13th century. The bell tower is a distinctively crooked spire, in order to offer better resistance to the wind. The church was classed as a historic monument in 1934. * '' Château de Bolland'': a med ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equitable Cake-cutting
Equitable (EQ) cake-cutting is a kind of a fair cake-cutting problem, in which the fairness criterion is equitability. It is a cake-allocation in which the subjective value of all partners is the same, i.e., each partner is equally happy with his/her share. Mathematically, that means that for all partners and : :V_i(X_i) = V_j(X_j) Where: *X_i is the piece of cake allocated to partner ; *V_i is the value measure of partner . It is a real-valued function that, for every piece of cake, returns a number that represents the utility of partner from that piece. Usually these functions are normalized such that V_i(\emptyset)=0 and V_i(EntireCake)=1 for every . See the page on equitability for examples and comparison to other fairness criteria. Finding an equitable cake-cutting for two partners One cut - full revelation When there are 2 partners, it is possible to get an EQ division with a single cut, but it requires full knowledge of the partners' valuations. Assume that the cake i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Egalitarian Cake-cutting
Egalitarian cake-cutting is a kind of fair cake-cutting in which the fairness criterion is the egalitarian rule. The ''cake'' represents a continuous resource (such as land or time), that has to be allocated among people with different valuations over parts of the resource. The goal in egalitarian cake-cutting is to maximize the smallest value of an agent; subject to this, maximize the next-smallest value; and so on. It is also called leximin cake-cutting, since the optimization is done using the leximin order on the vectors of utilities. The concept of egalitarian cake-cutting was first described by Dubins and Spanier, who called it "optimal partition". Existence Leximin-optimal allocations exist whenever the set of allocations is a compact space. This is always the case when allocating discrete objects, and easy to prove when allocating a finite number of continuous homogeneous resources. Dubins and Spanier proved that, with a continuous ''heterogeneous'' resource ("cak ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Egalitarian Rule
In social choice and operations research, the egalitarian rule (also called the max-min rule or the Rawlsian rule) is a rule saying that, among all possible alternatives, society should pick the alternative which maximizes the ''minimum utility'' of all individuals in society. It is a formal mathematical representation of the egalitarian philosophy. It also corresponds to John Rawls' principle of maximizing the welfare of the worst-off individual. Definition Let X be a set of possible `states of the world' or `alternatives'. Society wishes to choose a single state from X. For example, in a single-winner election, X may represent the set of candidates; in a resource allocation setting, X may represent all possible allocations. Let I be a finite set, representing a collection of individuals. For each i \in I, let u_i:X\longrightarrow\mathbb be a ''utility function'', describing the amount of happiness an individual ''i'' derives from each possible state. A '' social choice rule' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Resource Monotonicity
Resource monotonicity (RM; aka aggregate monotonicity) is a principle of fair division. It says that, if there are more resources to share, then all agents should be weakly better off; no agent should lose from the increase in resources. The RM principle has been studied in various division problems. Allocating divisible resources Single homogeneous resource, general utilities Suppose society has m units of some homogeneous divisible resource, such as water or flour. The resource should be divided among n agents with different utilities. The utility of agent i is represented by a function u_i; when agent i receives y_i units of resource, he derives from it a utility of u_i(y_i). Society has to decide how to divide the resource among the agents, i.e, to find a vector y_1,\dots,y_n such that: y_1+\cdots+y_n = m. Two classic allocation rules are the egalitarian rule - aiming to equalize the utilities of all agents (equivalently: maximize the minimum utility), and the utilitari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Population Monotonicity
Population monotonicity (PM) is a principle of consistency in allocation problems. It says that, when the set of agents participating in the allocation changes, the utility of all agents should change in the same direction. For example, if the resource is good, and an agent leaves, then all remaining agents should receive at least as much utility as in the original allocation. The term "population monotonicity" is used in an unrelated meaning in the context of apportionment of seats in the congress among states. There, the property relates to the population of an individual state, which determines the state's ''entitlement.'' A population-increase means that a state is entitled to more seats. This different property is described in the page '' state-population monotonicity''. In fair cake cutting In the fair cake-cutting problem, classic allocation rules such as divide and choose are not PM. Several rules are known to be PM: * When the pieces may be ''disconnected'', any function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proportional Division
A proportional division is a kind of fair division in which a resource is divided among ''n'' partners with subjective valuations, giving each partner at least 1/''n'' of the resource by his/her own subjective valuation. Proportionality was the first fairness criterion studied in the literature; hence it is sometimes called "simple fair division". It was first conceived by Steinhaus. Example Consider a land asset that has to be divided among 3 heirs: Alice and Bob who think that it's worth 3 million dollars, and George who thinks that it's worth $4.5M. In a proportional division, Alice receives a land-plot that she believes to be worth at least $1M, Bob receives a land-plot that ''he'' believes to be worth at least $1M (even though Alice may think it is worth less), and George receives a land-plot that he believes to be worth at least $1.5M. Existence A proportional division does not always exist. For example, if the resource contains several indivisible items and the number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equitable Division
Equitable (EQ) cake-cutting is a kind of a fair cake-cutting problem, in which the fairness criterion is equitability. It is a cake-allocation in which the subjective value of all partners is the same, i.e., each partner is equally happy with his/her share. Mathematically, that means that for all partners and : :V_i(X_i) = V_j(X_j) Where: *X_i is the piece of cake allocated to partner ; *V_i is the value measure of partner . It is a real-valued function that, for every piece of cake, returns a number that represents the utility of partner from that piece. Usually these functions are normalized such that V_i(\emptyset)=0 and V_i(EntireCake)=1 for every . See the page on equitability for examples and comparison to other fairness criteria. Finding an equitable cake-cutting for two partners One cut - full revelation When there are 2 partners, it is possible to get an EQ division with a single cut, but it requires full knowledge of the partners' valuations. Assume that the cake i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pareto Efficiency
Pareto efficiency or Pareto optimality is a situation where no action or allocation is available that makes one individual better off without making another worse off. The concept is named after Vilfredo Pareto (1848–1923), Italian civil engineer and economist, who used the concept in his studies of economic efficiency and income distribution. The following three concepts are closely related: * Given an initial situation, a Pareto improvement is a new situation where some agents will gain, and no agents will lose. * A situation is called Pareto-dominated if there exists a possible Pareto improvement. * A situation is called Pareto-optimal or Pareto-efficient if no change could lead to improved satisfaction for some agent without some other agent losing or, equivalently, if there is no scope for further Pareto improvement. The Pareto front (also called Pareto frontier or Pareto set) is the set of all Pareto-efficient situations. Pareto originally used the word "optimal" for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximin (philosophy)
Minimax (sometimes MinMax, MM or saddle point) is a decision rule used in artificial intelligence, decision theory, game theory, statistics, and philosophy for ''mini''mizing the possible loss for a worst case (''max''imum loss) scenario. When dealing with gains, it is referred to as "maximin" – to maximize the minimum gain. Originally formulated for several-player zero-sum game theory, covering both the cases where players take alternate moves and those where they make simultaneous moves, it has also been extended to more complex games and to general decision-making in the presence of uncertainty. Game theory In general games The maximin value is the highest value that the player can be sure to get without knowing the actions of the other players; equivalently, it is the lowest value the other players can force the player to receive when they know the player's action. Its formal definition is: :\underline = \max_ \min_ Where: * is the index of the player of inte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]