HOME
*



picture info

Dedekind–MacNeille Completion
In mathematics, specifically order theory, the Dedekind–MacNeille completion of a partially ordered set is the smallest complete lattice that contains it. It is named after Holbrook Mann MacNeille whose 1937 paper first defined and constructed it, and after Richard Dedekind because its construction generalizes the Dedekind cuts used by Dedekind to construct the real numbers from the rational numbers. It is also called the completion by cuts or normal completion. Order embeddings and lattice completions A partially ordered set (poset) consists of a set of elements together with a binary relation on pairs of elements that is reflexive ( for every ''x''), transitive (if and then ), and antisymmetric (if both and hold, then ). The usual numeric orderings on the integers or real numbers satisfy these properties; however, unlike the orderings on the numbers, a partial order may have two elements that are ''incomparable'': neither nor holds. Another familiar example of a pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order-embedding
In order theory, a branch of mathematics, an order embedding is a special kind of monotone function, which provides a way to include one partially ordered set into another. Like Galois connections, order embeddings constitute a notion which is strictly weaker than the concept of an order isomorphism. Both of these weakenings may be understood in terms of category theory. Formal definition Formally, given two partially ordered sets (posets) (S, \leq) and (T, \preceq), a function f: S \to T is an ''order embedding'' if f is both order-preserving and order-reflecting, i.e. for all x and y in S, one has : x\leq y \text f(x)\preceq f(y).. Such a function is necessarily injective, since f(x) = f(y) implies x \leq y and y \leq x. If an order embedding between two posets S and T exists, one says that S can be embedded into T. Properties An order isomorphism can be characterized as a surjective order embedding. As a consequence, any order embedding ''f'' restricts to an isomorphism ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Valery Ivanovich Glivenko
Valery Ivanovich Glivenko (russian: Вале́рий Ива́нович Гливе́нко, uk, Валерій Іванович Гливенко; 2 January 1897 (Gregorian calendar) / 21 December 1896 (Julian calendar) in Kiev – 15 February 1940 in Moscow) was a Soviet mathematician. He worked in foundations of mathematics, real analysis, probability theory, and mathematical statistics. He taught at Moscow Industrial Pedagogical Institute until his death at age 43. Most of Glivenko's work was published in French. See also * Glivenko's double-negation translation * Glivenko's theorem (probability theory) *Glivenko–Cantelli theorem In the theory of probability, the Glivenko–Cantelli theorem (sometimes referred to as the Fundamental Theorem of Statistics), named after Valery Ivanovich Glivenko and Francesco Paolo Cantelli, determines the asymptotic behaviour of the empir ... * Glivenko–Stone theorem Notes Works * * * * * * * * External links * Photograph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Boolean Algebra
In mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum (least upper bound). Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra ''A'' has an essentially unique completion, which is a complete Boolean algebra containing ''A'' such that every element is the supremum of some subset of ''A''. As a partially ordered set, this completion of ''A'' is the Dedekind–MacNeille completion. More generally, if κ is a cardinal then a Boolean algebra is called κ-complete if every subset of cardinality less than κ has a supremum. Examples Complete Boolean algebras *Every finite Boolean algebra is complete. *The algebra of subsets of a given set is a complete Boolean algebra. *The regular open sets of any topological space form a complete Boolean algebra. This example is of particular importance because every forcing poset can be considered as a topological spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Algebra (structure)
In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution). Every Boolean algebra gives rise to a Boolean ring, and vice versa, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨). However, the theory of Boolean rings has an inherent asymmetry between the two operators, while the axioms and theorems of Boolean algebra express the symmetry of the theory described by the duality principle. __TOC__ History The term "Boolean algebra" honors George Boole (1815–1864), a self-educated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antichain
In mathematics, in the area of order theory, an antichain is a subset of a partially ordered set such that any two distinct elements in the subset are incomparable. The size of the largest antichain in a partially ordered set is known as its width. By Dilworth's theorem, this also equals the minimum number of chains (totally ordered subsets) into which the set can be partitioned. Dually, the height of the partially ordered set (the length of its longest chain) equals by Mirsky's theorem the minimum number of antichains into which the set can be partitioned. The family of all antichains in a finite partially ordered set can be given join and meet operations, making them into a distributive lattice. For the partially ordered system of all subsets of a finite set, ordered by set inclusion, the antichains are called Sperner families and their lattice is a free distributive lattice, with a Dedekind number of elements. More generally, counting the number of antichains of a finit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (order Theory)
In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory. Basic definitions A subset of a partially ordered set (P, \leq) is an ideal, if the following conditions hold: # is non-empty, # for every ''x'' in and ''y'' in ''P'', implies that ''y'' is in  ( is a lower set), # for every ''x'', ''y'' in , there is some element ''z'' in , such that and  ( is a directed set). While this is the most general way to define an ideal for arbitrary posets, it was originally defined for lattices only. In this case, the following equivalent definition can be given: a subset of a lattice (P, \leq) is an ideal if and only if it is a lower set that is closed under finite joins ( suprema); that is, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birkhoff's Representation Theorem
:''This is about lattice theory. For other similarly named results, see Birkhoff's theorem (other).'' In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. The theorem can be interpreted as providing a one-to-one correspondence between distributive lattices and partial orders, between quasi-ordinal knowledge spaces and preorders, or between finite topological spaces and preorders. It is named after Garrett Birkhoff, who published a proof of it in 1937.. The name “Birkhoff's representation theorem” has also been applied to two other results of Birkhoff, one from 1935 on the representation of Boolean algebras as families of sets closed under union, intersection, and complement (so-called ''fields of sets'', closely related to the ''rings of sets'' used by Birk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distributive Lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. Definition As in the case of arbitrary lattices, one can choose to consider a distributive lattice ''L'' either as a structure of order theory or of universal algebra. Both views and their mutual correspondence are discussed in the article on lattices. In the present situation, the algebraic description appears to be more convenient. A lattice (''L'',∨,∧) is distributive if the following additional identity holds for all ''x'', ''y'', and ''z'' in ''L'': : ''x'' ∧ (''y'' ∨ ''z'') = (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z''). Viewing lattices as partiall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra under the subset relation, in which the join and meet are given by intersection and union, and the subset relation itself is the Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and every element of ''A'' is also an element of ''B'', then: :*''A'' is a subset of ''B'', denoted by A \subseteq B, or equivalently, :* ''B'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]