DenseNet
   HOME



picture info

DenseNet
A residual neural network (also referred to as a residual network or ResNet) is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition, and won the ImageNet Large Scale Visual Recognition ChallengeILSVRC of that year. As a point of terminology, "residual connection" refers to the specific architectural motif of , where f is an arbitrary neural network module. The motif had been used previously (see Residual neural network#History, §History for details). However, the publication of ResNet made it widely popular for Feedforward neural network, feedforward networks, appearing in neural networks that are seemingly unrelated to ResNet. The residual connection stabilizes the training and convergence of deep neural networks with hundreds of layers, and is a common motif in deep neural networks, such as Transformer (deep learning architecture), transformer models (e.g., BERT (language ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Long Short-term Memory
Long short-term memory (LSTM) is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models, and other sequence learning methods. It aims to provide a short-term memory for RNN that can last thousands of timesteps (thus "''long'' short-term memory"). The name is made in analogy with long-term memory and short-term memory and their relationship, studied by cognitive psychologists since the early 20th century. An LSTM unit is typically composed of a cell and three gates: an input gate, an output gate, and a forget gate. The cell remembers values over arbitrary time intervals, and the gates regulate the flow of information into and out of the cell. Forget gates decide what information to discard from the previous state, by mapping the previous state and the current input to a value between 0 and 1. A (rounded) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ReLU
In the context of Neural network (machine learning), artificial neural networks, the rectifier or ReLU (rectified linear unit) activation function is an activation function defined as the non-negative part of its argument, i.e., the ramp function: :\operatorname(x) = x^+ = \max(0, x) = \frac = \begin x & \text x > 0, \\ 0 & x \le 0 \end where x is the input to a Artificial neuron, neuron. This is analogous to half-wave rectification in electrical engineering. ReLU is one of the most popular activation functions for artificial neural networks, and finds application in computer vision and speech recognitionAndrew L. Maas, Awni Y. Hannun, Andrew Y. Ng (2014)Rectifier Nonlinearities Improve Neural Network Acoustic Models using Deep learning, deep neural nets and computational neuroscience. History The ReLU was first used by Alston Scott Householder, Alston Householder in 1941 as a mathematical abstraction of biological neural networks. Kunihiko Fukushima in 1969 used R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convolutional Neural Network
A convolutional neural network (CNN) is a type of feedforward neural network that learns features via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. Convolution-based networks are the de-facto standard in deep learning-based approaches to computer vision and image processing, and have only recently been replaced—in some cases—by newer deep learning architectures such as the transformer. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by the regularization that comes from using shared weights over fewer connections. For example, for ''each'' neuron in the fully-connected layer, 10,000 weights would be required for processing an image sized 100 × 100 pixels. However, applying cascaded ''convolution'' (or cross-correlation) kernels, only 25 weights for each convolutio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Loss Functions For Classification
In machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). Given \mathcal as the space of all possible inputs (usually \mathcal \subset \mathbb^d), and \mathcal = \ as the set of labels (possible outputs), a typical goal of classification algorithms is to find a function f: \mathcal \to \mathcal which best predicts a label y for a given input \vec. However, because of incomplete information, noise in the measurement, or probabilistic components in the underlying process, it is possible for the same \vec to generate different y. As a result, the goal of the learning problem is to minimize expected loss (also known as the risk), defined as :I = \displaystyle \int_ V(f(\vec),y) \, p(\vec,y) \, d\vec \, dy where V(f(\vec),y) is a given loss function, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vanishing Gradient Problem
In machine learning, the vanishing gradient problem is the problem of greatly diverging gradient magnitudes between earlier and later layers encountered when training neural networks with backpropagation. In such methods, neural network weights are updated proportional to their partial derivative of the loss function. As the number of forward propagation steps in a network increases, for instance due to greater network depth, the gradients of earlier weights are calculated with increasingly many multiplications. These multiplications shrink the gradient magnitude. Consequently, the gradients of earlier weights will be exponentially smaller than the gradients of later weights. This difference in gradient magnitude might introduce instability in the training process, slow it, or halt it entirely. For instance, consider the hyperbolic tangent activation function. The gradients of this function are in range . The product of repeated multiplication with such gradients decreases exponent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


European Conference On Computer Vision
The European Conference on Computer Vision (ECCV) is a biennial research conference with the proceedings published by Springer Science+Business Media. Similar to ICCV in scope and quality, it is held those years which ICCV is not. It is considered to be one of the top conferences in computer vision, alongside CVPR and ICCV, with an 'A' rating from the Australian Ranking of ICT Conferences and an 'A1' rating from the Brazilian ministry of education. The acceptance rate for ECCV 2010 was 24.4% for posters and 3.3% for oral presentations. Like other top computer vision conferences, ECCV has tutorial In education, a tutorial is a method of transferring knowledge and may be used as a part of a learning process. More interactive and specific than a book or a lecture, a tutorial seeks to teach by example and supply the information to complete ... talks, technical sessions, and poster sessions. The conference is usually spread over five to six days with the main technical progra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Backpropagation
In machine learning, backpropagation is a gradient computation method commonly used for training a neural network to compute its parameter updates. It is an efficient application of the chain rule to neural networks. Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through dynamic programming. Strictly speaking, the term ''backpropagation'' refers only to an algorithm for efficiently computing the gradient, not how the gradient is used; but the term is often used loosely to refer to the entire learning algorithm – including how the gradient is used, such as by stochastic gradient descent, or as an intermediate step in a more complicated optimizer, such as Adaptive Moment Estimation. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conference On Neural Information Processing Systems
The Conference and Workshop on Neural Information Processing Systems (abbreviated as NeurIPS and formerly NIPS) is a machine learning and computational neuroscience conference held every December. Along with ICLR and ICML, it is one of the three primary conferences of high impact in machine learning and artificial intelligence research. The conference is currently a double-track meeting (single-track until 2015) that includes invited talks as well as oral and poster presentations of refereed papers, followed by parallel-track workshops that up to 2013 were held at ski resorts. History The NeurIPS meeting was first proposed in 1986 at the annual invitation-only Snowbird Meeting on Neural Networks for Computing organized by The California Institute of Technology and Bell Laboratories. NeurIPS was designed as a complementary open interdisciplinary meeting for researchers exploring biological and artificial Neural Networks. Reflecting this multidisciplinary approach, NeurIPS ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]