HOME
*





Coning
Coning is a phenomenon which affects helicopter rotor discs. The tips of the helicopter rotor blades move faster through the air than the parts of the blades near the hub, so they generate more lift, which pushes the tips of the blades upwards, resulting in a slight cone shape to the rotor disc. This is balanced by centrifugal force. If rotor RPM drops too low, the rotor blades fold up with no chance of recovery. Helicopter rotors are typically designed with washout (twist) so that lift is relatively uniform along the blades. However, because lift increases quadratically with airspeed, coning still occurs at higher RPMs. Some helicopters such as the Bell UH-1 Iroquois are designed with "pre-coned" blades, which are curved downwards but lay more flat in flight. The ratio of aerodynamic forces to inertial forces is called the Lock number. See also *Unequal rotor lift distribution Unequal rotor lift distribution is an effect where the blades of a helicopter rotor generate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unequal Rotor Lift Distribution
Unequal rotor lift distribution is an effect where the blades of a helicopter rotor generate more lift at the rotor tips than at the rotor hub. A helicopter rotor blade is an aerofoil, which is driven through the air to create lift. The lift generated is proportional to the square of the speed. Because the tips of the rotating blades travel much faster through the air than the parts of the blades near the hub, they generate much more lift. If not mitigated, this effect would cause large bending stresses in the blade. In addition, the tip would have to be made stronger to handle the increased load. Helicopter manufacturers use the following techniques to equalise lift across the blade: * Washout is a geometric twist in the blade, such that the blade root near the hub has a higher angle-of-attack, thus higher lift. * Varying the aerofoil cross-section, such as flattening the aerofoil towards the tip, or tapering the blade towards the tip, which reduces its surface area thus redu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bell UH-1 Iroquois
The Bell UH-1 Iroquois (nicknamed "Huey") is a utility military helicopter designed and produced by the American aerospace company Bell Helicopter. It is the first member of the prolific Huey family, as well as the first turbine-powered helicopter in service with the United States military. Development of the Iroquois started in the early 1950s, a major impetus being a requirement issued by the United States Army for a new medical evacuation and utility helicopter. The Bell 204, first flown on 20 October 1956, was warmly received, particularly for the performance of its single turboshaft engine over piston engine-powered counterparts. An initial production contract for 100 ''HU-1A''s was issued in March 1960. In response to criticisms over the rotorcraft's power, Bell quickly developed multiple models furnished with more powerful engines; in comparison to the prototype's Lycoming YT53-L-1 (LTC1B-1) engine, producing 700 shp (520 kW), by 1966, the Lycoming T53-L-13, ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lock Number
In helicopter aerodynamics, the Lock number is the ratio of aerodynamic forces, which act to lift the rotor blades, to inertial forces, which act to maintain the blades in the plane of rotation. It is named after C. N. H. Lock, a British aerodynamicist who studied autogyros in the 1920s. Typical rotorcraft blades have a Lock number between 3 and 12, usually approximately 8. The Lock number is typically 8 to 10 for articulated rotors and 5 to 7 for hingeless rotors. High-stiffness blades may have a Lock number up to 14. Larger blades have a higher mass and more inertia, so tend to have a lower Lock number. Helicopter rotors with more than two blades can have lighter blades, so tend to have a higher Lock number. A low Lock number gives good autorotation characteristics due to higher inertia, however this comes with a mass penalty. Ray Prouty writes, "The previously discussed numbers: Mach, Reynolds and Froude are used in many fields of fluid dynamic studies. The Lock number is our ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Helicopter Rotor
A helicopter main rotor or rotor system is the combination of several rotary wings (rotor blades) with a control system, that generates the aerodynamic lift force that supports the weight of the helicopter, and the thrust that counteracts aerodynamic drag in forward flight. Each main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail rotor, which connects through a combination of drive shaft(s) and gearboxes along the tail boom. The blade pitch is typically controlled by the pilot using the helicopter flight controls. Helicopters are one example of rotary-wing aircraft ( rotorcraft). The name is derived from the Greek words ''helix'', helik-, meaning spiral; and ''pteron'' meaning wing. Design principles Overview The helicopter rotor is powered by the engine, through the transmission, to the rotating mast. The mast is a cylindrical metal shaft that extends upward from—and is driven by—the transmission. At the top of the m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Speed
In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude Magnitude may refer to: Mathematics *Euclidean vector, a quantity defined by both its magnitude and its direction *Magnitude (mathematics), the relative size of an object *Norm (mathematics), a term for the size or length of a vector *Order of ... of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity. The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval; the instantaneous speed is the limit (mathematics), limit of the average speed as the duration of the time interval approaches zero. Speed is #Difference between speed and velocity, not the same as velocity. Speed has the dimensional analysis, dimensions of distance divided by time. The International System of Units, SI unit of speed is the metre per s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lift (force)
A fluid flowing around an object exerts a force on it. Lift is the component of this force that is perpendicular to the oncoming flow direction. It contrasts with the drag force, which is the component of the force parallel to the flow direction. Lift conventionally acts in an upward direction in order to counter the force of gravity, but it can act in any direction at right angles to the flow. If the surrounding fluid is air, the force is called an aerodynamic force. In water or any other liquid, it is called a hydrodynamic force. Dynamic lift is distinguished from other kinds of lift in fluids. Aerostatic lift or buoyancy, in which an internal fluid is lighter than the surrounding fluid, does not require movement and is used by balloons, blimps, dirigibles, boats, and submarines. Planing lift, in which only the lower portion of the body is immersed in a liquid flow, is used by motorboats, surfboards, windsurfers, sailboats, and water-skis. Overview A fluid flowing arou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Washout (aeronautics)
Washout is a characteristic of aircraft wing design which deliberately reduces the lift distribution across the span of an aircraft’s wing. The wing is designed so that the angle of incidence is greater at the wing roots and decreases across the span, becoming lowest at the wing tip. This is usually to ensure that at stall speed the wing root stalls before the wing tips, providing the aircraft with continued aileron control and some resistance to spinning. Washout may also be used to modify the spanwise lift distribution to reduce lift-induced drag. Design considerations Washout is commonly achieved by designing the wing with a slight twist, reducing the angle of incidence from root to tip, and therefore causing a lower angle of attack at the tips than at the roots. This feature is sometimes referred to as structural washout, to distinguish it from aerodynamic washout. Wingtip stall is unlikely to occur symmetrically, especially if the aircraft is maneuvering. As an air ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]