Cointerpretability
   HOME
*





Cointerpretability
In mathematical logic, cointerpretability is a binary relation on formal theories: a formal theory ''T'' is cointerpretable in another such theory ''S'', when the language of ''S'' can be translated into the language of ''T'' in such a way that ''S'' proves every formula whose translation is a theorem of ''T''. The "translation" here is required to preserve the logical structure of formulas. This concept, in a sense dual to interpretability In mathematical logic, interpretability is a relation between formal theories that expresses the possibility of interpreting or translating one into the other. Informal definition Assume ''T'' and ''S'' are formal theories. Slightly simplified, '' ..., was introduced by , who also proved that, for theories of Peano arithmetic and any stronger theories with effective axiomatizations, cointerpretability is equivalent to \Sigma_1-conservativity. See also * Cotolerance * Interpretability logic. * Tolerance (in logic) References *. *. Math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tolerance (in Logic)
In mathematical logic, a tolerant sequence is a sequence :T_1,...,T_n of formal theories such that there are consistent extensions :S_1,...,S_n of these theories with each S_{i+1} interpretable in S_i. Tolerance naturally generalizes from sequences of theories to trees of theories. Weak interpretability can be shown to be a special, binary case of tolerance. This concept, together with its dual concept of cotolerance, was introduced by Japaridze in 1992, who also proved that, for Peano arithmetic and any stronger theories with effective axiomatizations, tolerance is equivalent to \Pi_1-consistency. See also *Interpretability *Cointerpretability * Interpretability logic References G. Japaridze ''The logic of linear tolerance''. Studia Logica ''Studia Logica'' (full name: Studia Logica, An International Journal for Symbolic Logic), is a scienific journal publishing papers employing formal tools from Mathematics and Logic. The scope of papers published in Studia Lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over sets and is a new set of ordered pairs consisting of elements in and in . It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element is ''related'' to an element , if and only if the pair belongs to the set of ordered pairs that defines the ''binary relation''. A binary relation is the most studied special case of an -ary relation over sets , which is a subset of the Cartesian product X_1 \times \cdots \times X_n. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime is related to each integer that is a multiple of , but not to an integer that is not a multiple of . In this relation, for instance, the prime number 2 is related to numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theory (mathematical Logic)
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios, a deductive system is first understood from context, after which an element \phi\in T of a deductively closed theory T is then called a theorem of the theory. In many deductive systems there is usually a subset \Sigma \subseteq T that is called "the set of axioms" of the theory T, in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. General theories (as expressed in formal language) When defining theories for foundational purposes, additional care must be taken, as normal set-theoretic language may not be appropriate. The construction of a theory begins by specifying a definite non-empty ''conceptual class'' \mathcal, the eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorem
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Interpretability
In mathematical logic, interpretability is a relation between formal theories that expresses the possibility of interpreting or translating one into the other. Informal definition Assume ''T'' and ''S'' are formal theories. Slightly simplified, ''T'' is said to be ''interpretable'' in ''S'' if and only if the language of ''T'' can be translated into the language of ''S'' in such a way that ''S'' proves the translation of every theorem of ''T''. Of course, there are some natural conditions on admissible translations here, such as the necessity for a translation to preserve the logical structure of formulas. This concept, together with weak interpretability, was introduced by Alfred Tarski in 1953. Three other related concepts are cointerpretability, logical tolerance, and cotolerance, introduced by Giorgi Japaridze in 1992–93. See also * Interpretation (logic) * Interpretation (model theory) * Interpretability logic References * Japaridze, G., and De Jongh, D. (1998) "The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peano Arithmetic
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The need to formalize arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as a collection of axioms in his book, ''The principles of arithmetic presented by a new method'' ( la, Arithm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiomatization
In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system (usually formulated within model theory) that describes a set of sentences that is closed under logical implication. A formal proof is a complete rendition of a mathematical proof within a formal system. Properties An axiomatic system is said to be ''consistent'' if it lacks contradiction. That is, it is impossible to derive both a statement and its negation from the system's axioms. Consistency is a key requirement for most axiomatic systems, as the presence of contradiction would allow any statement to be proven (principle of explosion). In an axiomatic system, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interpretability Logic
Interpretability logics comprise a family of modal logics that extend provability logic to describe interpretability or various related metamathematical properties and relations such as weak interpretability, Π1-conservativity, cointerpretability, tolerance, cotolerance, and arithmetic complexities. Main contributors to the field are Alessandro Berarducci, Petr Hájek, Konstantin Ignatiev, Giorgi Japaridze, Franco Montagna, Vladimir Shavrukov, Rineke Verbrugge, Albert Visser, and Domenico Zambella. Examples Logic ILM The language of ILM extends that of classical propositional logic by adding the unary modal operator \Box and the binary modal operator \triangleright (as always, \Diamond p is defined as \neg \Box\neg p). The arithmetical interpretation of \Box p is “p is provable in Peano arithmetic (PA)”, and p \triangleright q is understood as “PA+q is interpretable in PA+p”. Axiom schemata: 1. All classical tautologies 2. \Box(p \rightarrow q) \rightarrow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Relations
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]