HOME
*





Craig Huneke
Craig Lee Huneke (born August 27, 1951) is an American mathematician specializing in commutative algebra. He is a professor at the University of Virginia. Huneke graduated from Oberlin College with a bachelor's degree in 1973 and in 1978 earned a Ph.D. from the Yale University under Nathan Jacobson and David Eisenbud (''Determinantal ideal and questions related to factoriality''). As a post-doctoral fellow, he was at the University of Michigan. In 1979 he became an assistant professor and was at the Massachusetts Institute of Technology and the University of Bonn (1980). In 1981 he became an assistant professor at Purdue University, where in 1984 he became an associate Professor and became a professor in 1987. From 1994 to 1995 he was a visiting professor at the University of Michigan and in 1999 was at the Max Planck Institute for Mathematics in Bonn (as a Fulbright Scholar). In 1999, he was Henry J. Bischoff professor at the University of Kansas. In 2002 he was at MSRI. Since ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


United States
The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 U.S. state, states, a Washington, D.C., federal district, five major unincorporated territories, nine United States Minor Outlying Islands, Minor Outlying Islands, and 326 Indian reservations. The United States is also in Compact of Free Association, free association with three Oceania, Pacific Island Sovereign state, sovereign states: the Federated States of Micronesia, the Marshall Islands, and the Palau, Republic of Palau. It is the world's List of countries and dependencies by area, third-largest country by both land and total area. It shares land borders Canada–United States border, with Canada to its north and Mexico–United States border, with Mexico to its south and has maritime borders with the Bahamas, Cuba, Russia, and other nations. With a population of over 333 million, it is the List of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (field Theory)
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their requirements for a ring (see Multiplicative identity and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the '' Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kyoto
Kyoto (; Japanese: , ''Kyōto'' ), officially , is the capital city of Kyoto Prefecture in Japan. Located in the Kansai region on the island of Honshu, Kyoto forms a part of the Keihanshin metropolitan area along with Osaka and Kobe. , the city had a population of 1.46 million. The city is the cultural anchor of a substantially larger metropolitan area known as Greater Kyoto, a metropolitan statistical area (MSA) home to a census-estimated 3.8 million people. Kyoto is one of the oldest municipalities in Japan, having been chosen in 794 as the new seat of Japan's imperial court by Emperor Kanmu. The original city, named Heian-kyō, was arranged in accordance with traditional Chinese feng shui following the model of the ancient Chinese capital of Chang'an/ Luoyang. The emperors of Japan ruled from Kyoto in the following eleven centuries until 1869. It was the scene of several key events of the Muromachi period, Sengoku period, and the Boshin War, such as the Ōnin War, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of International Congresses Of Mathematicians Plenary And Invited Speakers
This is a list of International Congresses of Mathematicians Plenary and Invited Speakers. Being invited to talk at an International Congress of Mathematicians has been called "the equivalent, in this community, of an induction to a hall of fame." The current list of Plenary and Invited Speakers presented here is based on the ICM's post-WW II terminology, in which the one-hour speakers in the morning sessions are called "Plenary Speakers" and the other speakers (in the afternoon sessions) whose talks are included in the ICM published proceedings are called "Invited Speakers". In the pre-WW II congresses the Plenary Speakers were called "Invited Speakers". By congress year 1897, Zürich * Jules Andrade * Léon Autonne *Émile Borel * N. V. Bougaïev *Francesco Brioschi *Hermann Brunn *Cesare Burali-Forti *Charles Jean de la Vallée Poussin *Gustaf Eneström *Federigo Enriques *Gino Fano * Zoel García de Galdeano * Francesco Gerbaldi *Paul Gordan *Jacques Hadamard * Adolf Hurwitz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gorenstein Ring
In commutative algebra, a Gorenstein local ring is a commutative Noetherian local ring ''R'' with finite injective dimension as an ''R''-module. There are many equivalent conditions, some of them listed below, often saying that a Gorenstein ring is self-dual in some sense. Gorenstein rings were introduced by Grothendieck in his 1961 seminar (published in ). The name comes from a duality property of singular plane curves studied by (who was fond of claiming that he did not understand the definition of a Gorenstein ring). The zero-dimensional case had been studied by . and publicized the concept of Gorenstein rings. Frobenius rings are noncommutative analogs of zero-dimensional Gorenstein rings. Gorenstein schemes are the geometric version of Gorenstein rings. For Noetherian local rings, there is the following chain of inclusions. Definitions A Gorenstein ring is a commutative Noetherian ring such that each localization at a prime ideal is a Gorenstein local ring, as defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symbolic Powers Of Ideal
Symbolic may refer to: * Symbol, something that represents an idea, a process, or a physical entity Mathematics, logic, and computing * Symbolic computation, a scientific area concerned with computing with mathematical formulas * Symbolic dynamics, a method for modeling dynamical systems by a discrete space consisting of infinite sequences of abstract symbols * Symbolic execution In computer science, symbolic execution (also symbolic evaluation or symbex) is a means of analyzing a program to determine what inputs cause each part of a program to execute. An interpreter follows the program, assuming symbolic values for inp ..., the analysis of computer programs by tracking symbolic rather than actual values * Symbolic link, a special type of file in a computer memory storage system * Symbolic logic, the use of symbols for logical operations in logic and mathematics Music * Symbolic (Death album), ''Symbolic'' (Death album), a 1995 album by the band Death * Symbolic (Voodoo Glow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Local Cohomology
In algebraic geometry, local cohomology is an algebraic analogue of relative cohomology. Alexander Grothendieck introduced it in seminars in Harvard in 1961 written up by , and in 1961-2 at IHES written up as SGA2 - , republished as . Given a function (more generally, a section of a quasicoherent sheaf) defined on an open subset of an algebraic variety (or scheme), local cohomology measures the obstruction to extending that function to a larger domain. The rational function 1/x, for example, is defined only on the complement of 0 on the affine line \mathbb^1_K over a field K, and cannot be extended to a function on the entire space. The local cohomology module H^1_(K (where K /math> is the coordinate ring of \mathbb^1_K) detects this in the nonvanishing of a cohomology class /x/math>. In a similar manner, 1/xy is defined away from the x and y axes in the affine plane, but cannot be extended to either the complement of the x-axis or the complement of the y-axis alone ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the La ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]