Consistency Strength
In mathematical logic, two theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory ''T''. Instead we usually take a theory ''S'', believed to be consistent, and try to prove the weaker statement that if ''S'' is consistent then ''T'' must also be consistent—if we can do this we say that ''T'' is ''consistent relative to S''. If ''S'' is also consistent relative to ''T'' then we say that ''S'' and ''T'' are equiconsistent. Consistency In mathematical logic, formal theories are studied as mathematical objects. Since some theories are powerful enough to model different mathematical objects, it is natural to wonder about their own consistency. Hilbert proposed a program at the beginning of the 20th century whose ultimate goal was to show, using mathematical metho ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Weakly Compact Cardinal
In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by ; weakly compact cardinals are large cardinals, meaning that their existence cannot be proven from the standard axioms of set theory. (Tarski originally called them "not strongly incompact" cardinals.) Formally, a cardinal κ is defined to be weakly compact if it is uncountable and for every function ''f'': � 2 → there is a set of cardinality κ that is homogeneous for ''f''. In this context, � 2 means the set of 2-element subsets of κ, and a subset ''S'' of κ is homogeneous for ''f'' if and only if either all of 'S''sup>2 maps to 0 or all of it maps to 1. The name "weakly compact" refers to the fact that if a cardinal is weakly compact then a certain related infinitary language satisfies a version of the compactness theorem; see below. Equivalent formulations The following are equivalent for any uncountable cardinal κ: # κ is weakly compact. # for every λn → � ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |