HOME





Compatible System Of ℓ-adic Representations
In number theory, a compatible system of ℓ-adic representations is an abstraction of certain important families of ℓ-adic Galois representations, indexed by prime numbers ℓ, that have compatibility properties for almost all ℓ. Examples Prototypical examples include the cyclotomic character and the Tate module of an abelian variety. Variations A slightly more restrictive notion is that of a ''strictly'' compatible system of ℓ-adic representations which offers more control on the compatibility properties. More recently, some authorsSuch as have started requiring more compatibility related to ''p''-adic Hodge theory. Importance Compatible systems of ℓ-adic representations are a fundamental concept in contemporary algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Representation
In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for ''G''-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory. Examples *Given a field ''K'', the multiplicative group (''Ks'')× of a separable closure of ''K'' is a Galois module for the absolute Galois group. Its second cohomology group is isomorphic to the Brauer group of ''K'' (by Hilbert's theorem 90, its first cohomology group is zero). *If ''X'' is a smooth proper scheme over a field ''K'' then the ℓ-adic cohomology groups of its geometric fibre are Galois modules for the absolute Galois group of ''K''. Ramification theory Let ''K'' be a valued field (with valuation denoted ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Almost All
In mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if X is a set (mathematics), set, "almost all elements of X" means "all elements of X but those in a negligible set, negligible subset of X". The meaning of "negligible" depends on the mathematical context; for instance, it can mean finite set, finite, countable set, countable, or null set, null. In contrast, "almost no" means "a negligible quantity"; that is, "almost no elements of X" means "a negligible quantity of elements of X". Meanings in different areas of mathematics Prevalent meaning Throughout mathematics, "almost all" is sometimes used to mean "all (elements of an infinite set) except for finite set, finitely many". This use occurs in philosophy as well. Similarly, "almost all" can mean "all (elements of an uncountable set) except for countable set, countably many". Examples: * Almost all positive integers are greater than 1012. * Almost all prime numbers are odd (2 is the only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclotomic Character
In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring , its representation space is generally denoted by (that is, it is a representation ). ''p''-adic cyclotomic character Fix a prime, and let denote the absolute Galois group of the rational numbers. The roots of unity \mu_ = \left\ form a cyclic group of order p^n, generated by any choice of a primitive th root of unity . Since all of the primitive roots in \mu_ are Galois conjugate, the Galois group G_\mathbf acts on \mu_ by automorphisms. After fixing a primitive root of unity \zeta_ generating \mu_, any element \zeta\in\mu_ can be written as a power of \zeta_, where the exponent is a unique element in \mathbf/p^n\mathbf, which is a unit if \zeta is also primitive. One can thus write, for \sigma\in G_\mathbf, \sigma.\zeta := \sigma(\zeta) = \zeta_^ where a(\sigma,n) \in (\mathbf/p^n \mathbf) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tate Module
In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group ''A''. Often, this construction is made in the following situation: ''G'' is a commutative group scheme over a field ''K'', ''Ks'' is the separable closure of ''K'', and ''A'' = ''G''(''Ks'') (the ''Ks''-valued points of ''G''). In this case, the Tate module of ''A'' is equipped with an action of the absolute Galois group of ''K'', and it is referred to as the Tate module of ''G''. Definition Given an abelian group ''A'' and a prime number ''p'', the ''p''-adic Tate module of ''A'' is :T_p(A)=\underset A ^n/math> where ''A'' 'pn''is the ''pn'' torsion of ''A'' (i.e. the kernel of the multiplication-by-''pn'' map), and the inverse limit is over positive integers ''n'' with transition morphisms given by the multiplication-by-''p'' map ''A'' 'p''''n''+1→ ''A'' 'pn'' Thus, the Tate module encodes all the ''p''-power torsion of ''A''. It is equipped w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abelian Variety
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any Field (mathematics), field; the variety is then said to be defined ''over'' that field. Historically the first abelian varieties to be studied were those defined over the field of complex numbers. Such abelian varieties turn out to be exactly those Complex torus, complex tori that can be holomorphic, holomorphically embedded into a complex projective space. Abelian varieties defined over algebraic number fields are a special case, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic Hodge Theory
In mathematics, ''p''-adic Hodge theory is a theory that provides a way to classify and study ''p''-adic Galois representations of characteristic 0 local fields with residual characteristic ''p'' (such as Q''p''). The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge–Tate representation. Hodge–Tate representations are related to certain decompositions of ''p''-adic cohomology theories analogous to the Hodge decomposition, hence the name ''p''-adic Hodge theory. Further developments were inspired by properties of ''p''-adic Galois representations arising from the étale cohomology of varieties. Jean-Marc Fontaine introduced many of the basic concepts of the field. General classification of ''p''-adic representations Let K be a local field with residue field k of characteristic p. In this article, a p''-adic representation'' of K (or of G_K, the absolute Galois group of K) will be a continuous ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and Algebraic function field, function fields. These properties, such as whether a ring (mathematics), ring admits unique factorization, the behavior of ideal (ring theory), ideals, and the Galois groups of field (mathematics), fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]