Colbert Number
   HOME





Colbert Number
PrimeGrid is a volunteer computing project that searches for very large (up to world-record size) prime numbers whilst also aiming to solve long-standing mathematical conjectures. It uses the Berkeley Open Infrastructure for Network Computing (BOINC) platform. PrimeGrid offers a number of subprojects for prime-number sieving and discovery. Some of these are available through the BOINC client, others through the PRPNet client. Some of the work is manual, i.e. it requires manually starting work units and uploading results. Different subprojects may run on different operating systems, and may have executables for CPUs, GPUs, or both; while running the Lucas–Lehmer–Riesel test, CPUs with Advanced Vector Extensions and Fused Multiply-Add instruction sets will yield the fastest results for non-GPU accelerated workloads. PrimeGrid awards badges to users in recognition of achieving certain defined levels of credit for work done. The badges have no intrinsic value but are valued by ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rytis Slatkevičius
Rytis is a Lithuanian masculine given name. Individuals with the name Rytis include: *Rytis Juknevičius (born 1993), Lithuanian basketball player *Rytis Leliūga (born 1987), Lithuanian footballer *Rytis Rimdeika (born 1966), Lithuanian medical doctor, scientist and professor *Rytis Mažulis (born 1961), Lithuanian composer *Rytis Sakalauskas (born 1987), Lithuanian track and field sprint athlete *Rytis Vaišvila (born 1971), Lithuanian basketball player and coach *Rytis Zemkauskas Rytis Zemkauskas (born October 28, 1969 in Kaunas, Lithuania) is a journalist, a writer, a broadcaster and a film director. Biography Graduated Vilnius University (field of linguistics, majored in comparative literature) in 1993. Since 1995 h ... (born 1969), Lithuanian journalist, writer, broadcaster and a film director References {{given name Lithuanian masculine given names Masculine given names ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Woodall Prime
In number theory, a Woodall number (''W''''n'') is any natural number of the form :W_n = n \cdot 2^n - 1 for some natural number ''n''. The first few Woodall numbers are: :1, 7, 23, 63, 159, 383, 895, … . History Woodall numbers were first studied by Allan J. C. Cunningham and H. J. Woodall in 1917, inspired by James Cullen's earlier study of the similarly defined Cullen numbers. Woodall primes Woodall numbers that are also prime numbers are called Woodall primes; the first few exponents ''n'' for which the corresponding Woodall numbers ''W''''n'' are prime are 2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, ... ; the Woodall primes themselves begin with 7, 23, 383, 32212254719, ... . In 1976 Christopher Hooley showed that almost all Cullen numbers are composite. In October 1995, Wilfred Keller published a paper discussing several new Cullen primes and the efforts made to factorise other Cullen and Woodall numbers. Included in that paper is a personal communication to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wieferich Prime
In number theory, a Wieferich prime is a prime number ''p'' such that ''p''2 divides , therefore connecting these primes with Fermat's little theorem, which states that every odd prime ''p'' divides . Wieferich primes were first described by Arthur Wieferich in 1909 in works pertaining to Fermat's Last Theorem, at which time both of Fermat's theorems were already well known to mathematicians. Since then, connections between Wieferich primes and various other topics in mathematics have been discovered, including other types of numbers and primes, such as Mersenne and Fermat numbers, specific types of pseudoprimes and some types of numbers generalized from the original definition of a Wieferich prime. Over time, those connections discovered have extended to cover more properties of certain prime numbers as well as more general subjects such as number fields and the ''abc'' conjecture. , the only known Wieferich primes are 1093 and 3511 . Equivalent definitions The stronge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Twin Primes
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger. However, it is unknown whether there are infinitely many twin primes (the so-called twin prime conjecture) or if there is a largest pair. The breakthrough work of Yitang Zhang in 2013, as well as work by James Maynard, Terence Tao and others, has made substantial progress towards proving that there are infinitely many twin primes, but at present this remains unsolved. Properties Usually the pair is not considered to be a pair of twin primes. Since 2 is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RSA-768
In mathematics, the RSA numbers are a set of large semiprimes (numbers with exactly two prime factors) that were part of the RSA Factoring Challenge. The challenge was to find the prime factors of each number. It was created by RSA Laboratories in March 1991 to encourage research into computational number theory and the practical difficulty of factoring large integers. The challenge was ended in 2007. RSA Laboratories (which is an initialism of the creators of the technique; Rivest, Shamir and Adleman) published a number of semiprimes with 100 to 617 decimal digits. Cash prizes of varying size, up to US$200,000 (and prizes up to $20,000 awarded), were offered for factorization of some of them. The smallest RSA number was factored in a few days. Most of the numbers have still not been factored and many of them are expected to remain unfactored for many years to come. , the smallest 23 of the 54 listed numbers have been factored. While the RSA challenge officially ended in 2007 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RSA-640
In mathematics, the RSA numbers are a set of large semiprimes (numbers with exactly two prime factors) that were part of the RSA Factoring Challenge. The challenge was to find the prime factors of each number. It was created by RSA Laboratories in March 1991 to encourage research into computational number theory and the practical difficulty of factoring large integers. The challenge was ended in 2007. RSA Laboratories (which is an initialism of the creators of the technique; Rivest, Shamir and Adleman) published a number of semiprimes with 100 to 617 decimal digits. Cash prizes of varying size, up to US$200,000 (and prizes up to $20,000 awarded), were offered for factorization of some of them. The smallest RSA number was factored in a few days. Most of the numbers have still not been factored and many of them are expected to remain unfactored for many years to come. , the smallest 23 of the 54 listed numbers have been factored. While the RSA challenge officially ended in 2007, p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riesel Number
In mathematics, a Riesel number is an odd natural number ''k'' for which k\times2^n-1 is composite for all natural numbers ''n'' . In other words, when ''k'' is a Riesel number, all members of the following set are composite: :\left\. If the form is instead k\times2^n+1, then ''k'' is a Sierpiński number. Riesel problem In 1956, Hans Riesel showed that there are an infinite number of integers ''k'' such that k\times2^n-1 is not prime for any integer ''n''. He showed that the number 509203 has this property, as does 509203 plus any positive integer multiple of 11184810. The Riesel problem consists in determining the smallest Riesel number. Because no covering set has been found for any ''k'' less than 509203, it is conjectured to be the smallest Riesel number. To check if there are ''k'' ''k'') :2, 3, 3, 39, 4, 4, 4, 5, 6, 5, 5, 6, 5, 5, 5, 7, 6, 6, 11, 7, 6, 29, 6, 6, 7, 6, 6, 7, 6, 6, 6, 8, 8, 7, 7, 10, 9, 7, 8, 9, 7, 8, 7, 7, 8, 7, 8, 10, 7, 7, 26, 9, 7, 8, 7, 7, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat Prime
In mathematics, a Fermat number, named after Pierre de Fermat (1601–1665), the first known to have studied them, is a positive integer of the form:F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers are: 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, 340282366920938463463374607431768211457, ... . If 2''k'' + 1 is prime and , then ''k'' itself must be a power of 2, so is a Fermat number; such primes are called Fermat primes. , the only known Fermat primes are , , , , and . Basic properties The Fermat numbers satisfy the following recurrence relations: : F_ = (F_-1)^+1 : F_ = F_ \cdots F_ + 2 for ''n'' ≥ 1, : F_ = F_ + 2^F_ \cdots F_ : F_ = F_^2 - 2(F_-1)^2 for . Each of these relations can be proved by mathematical induction. From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1. To see this, suppose that and ''F'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Primes In Arithmetic Progression
In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a_n = 3 + 4n for 0 \le n \le 2. According to the Green–Tao theorem, there exist arbitrarily long arithmetic progressions in the sequence of primes. Sometimes the phrase may also be used about primes which belong to an arithmetic progression which also contains composite numbers. For example, it can be used about primes in an arithmetic progression of the form an + b, where ''a'' and ''b'' are coprime which according to Dirichlet's theorem on arithmetic progressions contains infinitely many primes, along with infinitely many composites. For any integer k\geq 3, an AP-''k'' (also called PAP-''k'') is any sequence of k primes in arithmetic progression. An AP-k can be written as k primes of the form an+b, for fixed integers a (called the common difference) and b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


321 Prime
In number theory, a Thabit number, Thâbit ibn Qurra number, or 321 number is an integer of the form 3 \cdot 2^n - 1 for a non-negative integer ''n''. The first few Thabit numbers are: : 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, ... The 9th century mathematician, physician, astronomer An astronomer is a scientist in the field of astronomy who focuses on a specific question or field outside the scope of Earth. Astronomers observe astronomical objects, such as stars, planets, natural satellite, moons, comets and galaxy, galax ... and translator Thābit ibn Qurra is credited as the first to study these numbers and their relation to amicable numbers. Properties The binary representation of the Thabit number 3·2''n''−1 is ''n''+2 digits long, consisting of "10" followed by ''n'' 1s. The first few Thabit numbers that are prime number, prime (Thabit primes or 321 primes): :2, 5, 11, 23, 47, 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE