HOME





Closeness (mathematics)
Closeness is a basic concept in topology and related areas in mathematics. Intuitively, we say two sets are close if they are arbitrarily near to each other. The concept can be defined naturally in a metric space where a notion of distance between elements of the space is defined, but it can be generalized to topological spaces where we have no concrete way to measure distances. The closure operator ''closes'' a given set by mapping it to a closed set which contains the original set and all points close to it. The concept of closeness is related to limit point. Definition Given a metric space (X,d) a point p is called close or near to a set A if :d(p,A) = 0, where the distance between a point and a set is defined as :d(p, A) := \inf_ d(p, a) where inf stands for infimum. Similarly a set B is called close to a set A if :d(B,A) = 0 where :d(B, A) := \inf_ d(b, A). Properties *if a point p is close to a set A and a set B then A and B are close, but the converse is not true. *c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Torsion (mechanics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a Set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of List of continuity-related mathematical topics, continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and Homotopy, homotopies. A property that is invariant under such deformations is a to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Functions
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Entourage (topology)
In the mathematical field of topology, a uniform space is a set with additional structure that is used to define '' uniform properties'', such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups, but the concept is designed to formulate the weakest axioms needed for most proofs in analysis. In addition to the usual properties of a topological structure, in a uniform space one formalizes the notions of relative closeness and closeness of points. In other words, ideas like "''x'' is closer to ''a'' than ''y'' is to ''b''" make sense in uniform spaces. By comparison, in a general topological space, given sets ''A,B'' it is meaningful to say that a point ''x'' is ''arbitrarily close'' to ''A'' (i.e., in the closure of ''A''), or perhaps that ''A'' is a ''smaller neighborhood'' of ''x'' than ''B'', but notions of closeness of points and relative closeness are not described well by topological structure alone. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Space
In the mathematical field of topology, a uniform space is a topological space, set with additional mathematical structure, structure that is used to define ''uniform property, uniform properties'', such as complete space, completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups, but the concept is designed to formulate the weakest axioms needed for most proofs in mathematical analysis, analysis. In addition to the usual properties of a topological structure, in a uniform space one formalizes the notions of relative closeness and closeness of points. In other words, ideas like "''x'' is closer to ''a'' than ''y'' is to ''b''" make sense in uniform spaces. By comparison, in a general topological space, given sets ''A,B'' it is meaningful to say that a point ''x'' is ''arbitrarily close'' to ''A'' (i.e., in the Closure (topology), closure of ''A''), or perhaps that ''A'' is a ''smaller neighborhood'' of ''x'' than ''B'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kuratowski Closure Axioms
In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a Set (mathematics), set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski, and the idea was further studied by mathematicians such as Wacław Sierpiński and Antonio Monteiro (mathematician), António Monteiro, among others. A similar set of axioms can be used to define a topological structure using only the dual notion of Interior (topology)#Interior operator, interior operator. Definition Kuratowski closure operators and weakenings Let X be an arbitrary set and \wp(X) its power set. A Kuratowski closure operator is a unary operation \mathbf:\wp(X) \to \wp(X) with the following properties: A consequence of \mathbf preserving binary unions is the following condition: In fact if we rewrite the equality in [K4] as an inclusion, giving the weaker axiom [K4''] ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniformly Continuous Functions
In mathematics, a real function f of real numbers is said to be uniformly continuous if there is a positive real number \delta such that function values over any function domain interval of the size \delta are as close to each other as we want. In other words, for a uniformly continuous real function of real numbers, if we want function value differences to be less than any positive real number \varepsilon, then there is a positive real number \delta such that , f(x) - f(y), 0 there exists a real number \delta > 0 such that for every x,y \in X with d_1(x,y) 0 such that for every x,y \in X , , x - y, 0 \; \forall x \in X \; \forall y \in X : \, d_1(x,y) 0 , \forall x \in X , and \forall y \in X ) are used. * Equivalently, f is uniformly continuous if it admits a modulus of continuity. Definition of (ordinary) continuity * f is called continuous \underline if for every real number \varepsilon > 0 there exists a real number \delta > 0 such that for every y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Converse (logic)
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the Material conditional, implication ''P'' → ''Q'', the converse is ''Q'' → ''P''. For the categorical proposition ''All S are P'', the converse is ''All P are S''. Either way, the truth of the converse is generally independent from that of the original statement.Robert Audi, ed. (1999), ''The Cambridge Dictionary of Philosophy'', 2nd ed., Cambridge University Press: "converse". Implicational converse Let ''S'' be a statement of the form ''P implies Q'' (''P'' → ''Q''). Then the ''converse'' of ''S'' is the statement ''Q implies P'' (''Q'' → ''P''). In general, the truth of ''S'' says nothing about the truth of its converse, unless the Antecedent (logic), antecedent ''P'' and the consequent ''Q'' are logically equivalent. For example, consider the true statement "If I am a human, then I am mortal." The converse of that stateme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infimum And Supremum
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, and if ''b'' is a lower bound of S, then ''b'' is less than or equal to the infimum of S. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; : suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. If the supremum of S exists, it is unique, and if ''b'' is an upper bound of S, then the supremum of S is less than or equal to ''b''. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Point
In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x contains a point of S other than x itself. A limit point of a set S does not itself have to be an element of S. There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence (x_n)_ in a topological space X is a point x such that, for every neighbourhood V of x, there are infinitely many natural numbers n such that x_n \in V. This definition of a cluster or accumulation point of a sequence generalizes to nets and filters. The similarly named notion of a (respectively, a limit point of a filter, a limit point of a net) by definition refers to a point that the sequence converges to (respectively, the filter converges to, the net converges to). Importantly, although "limit point of a set" is synonymous with "cluster/accumulation poi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]