Characteristic Linear System Of An Algebraic Family Of Curves
   HOME



picture info

Characteristic Linear System Of An Algebraic Family Of Curves
In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family. These arose first in the form of a ''linear system'' of algebraic curves in the projective plane. It assumed a more general form, through gradual generalisation, so that one could speak of linear equivalence of divisors ''D'' on a general scheme or even a ringed space (X, \mathcal_X). Linear systems of dimension 1, 2, or 3 are called a pencil, a net, or a web, respectively. A map determined by a linear system is sometimes called the Kodaira map. Definitions Given a general variety X, two divisors D,E \in \text(X) are linearly equivalent if :E = D + (f)\ for some non-zero rational function f on X, or in other words a non-zero element f of the function field k(X). Here (f) denotes the divisor of zeroes and poles of the function f. Note that if X has singu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kodaira–Spencer Map
In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a Map (mathematics), map associated to a Deformation theory, deformation of a Scheme (mathematics), scheme or complex manifold ''X'', taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf (mathematics), sheaf of vector fields on ''X''. Definition Historical motivation The Kodaira–Spencer map was originally constructed in the setting of complex manifolds. Given a complex analytic manifold M with charts U_i and biholomorphic maps f_ sending z_k \to z_j = (z_j^1,\ldots, z_j^n) gluing the charts together, the idea of deformation theory is to replace these transition maps f_(z_k) by parametrized transition maps f_(z_k, t_1,\ldots, t_k) over some base B (which could be a real manifold) with coordinates t_1,\ldots, t_k, such that f_(z_k, 0,\ldots, 0) = f_(z_k). This means the parameters t_i deform the complex structure of the origina ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Holomorphic Line Bundle
In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold such that the total space is a complex manifold and the projection map is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle. By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety ''X'' (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.e., locally free sheaves of finite rank) on ''X''. Definition through trivialization Specifically, one requires that the trivialization maps :\phi_U : \pi^(U) \to U \times \mathbf^k are biholomorphic maps. This is equivalent to requiring that the transition functions :t_ : U\cap V \to \mathrm_k(\mathbf) are holomorphic maps. The holomorphic structure on the tangent bundle of a complex manifold is guarant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Italian School Of Algebraic Geometry
In relation to the history of mathematics, the Italian school of algebraic geometry refers to mathematicians and their work in birational geometry, particularly on algebraic surfaces, centered around Rome roughly from 1885 to 1935. There were 30 to 40 leading mathematicians who made major contributions, about half of those being Italian. The leadership fell to the group in Rome of Guido Castelnuovo, Federigo Enriques and Francesco Severi, who were involved in some of the deepest discoveries, as well as setting the style. Algebraic surfaces The emphasis on algebraic surfaces—algebraic varieties of dimension two—followed on from an essentially complete geometric theory of algebraic curves (dimension 1). The position in around 1870 was that the curve theory had incorporated with Brill–Noether theory the Riemann–Roch theorem in all its refinements (via the detailed geometry of the theta-divisor). The classification of algebraic surfaces was a bold and successful att ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birational Geometry
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying Map (mathematics), mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles. Birational maps Rational maps A rational mapping, rational map from one variety (understood to be Irreducible component, irreducible) X to another variety Y, written as a dashed arrow , is defined as a algebraic geometry#Morphism of affine varieties, morphism from a nonempty open subset U \subset X to Y. By definition of the Zariski topology used in algebraic geometry, a nonempty open subset U is always dense in X, in fact the complement of a lower-dimensional subset. Concretely, a rational map can be written in coordinates using rational functions. Birational maps A birational map from ''X'' to ''Y'' is a ration ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cayley–Bacharach Theorem
In mathematics, the Cayley–Bacharach theorem is a statement about cubic curves (plane curves of degree three) in the projective plane . The original form states: :Assume that two cubics and in the projective plane meet in nine (different) points, as they do in general over an algebraically closed field. Then every cubic that passes through any eight of the points also passes through the ninth point. A more intrinsic form of the Cayley–Bacharach theorem reads as follows: :Every cubic curve over an algebraically closed field that passes through a given set of eight points also passes through (counting multiplicities) a ninth point which depends only on . A related result on conics was first proved by the French geometer Michel Chasles and later generalized to cubics by Arthur Cayley and Isaak Bacharach. Details If seven of the points lie on a conic, then the ninth point can be chosen on that conic, since will always contain the whole conic on account of Bézout's the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Bundle
In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion). Definition Riemannian manifold Let (M,g) be a Riemannian manifold, and S \subset M a Riemannian submanifold. Define, for a given p \in S, a vector n \in \mathrm_p M to be '' normal'' to S whenever g(n,v)=0 for all v\in \mathrm_p S (so that n is orthogonal to \mathrm_p S). The set \mathrm_p S of all such n is then called the ''normal space'' to S at p. Just as the total space of the tangent bundle to a manifold is constructed from all tangent spaces to the manifold, the total space of the normal bundle \mathrm S to S is defined as :\mathrmS := \coprod_ \mathrm_p S. The conormal bundle is defined as the dual bundle to the normal bundle. It can be realised naturally as a sub-bundle of the cotangent bundle. General definition More abstractly, given an immersion i: N \to M (for instance an em ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trigonal Curve
In mathematics, the gonality of an algebraic curve ''C'' is defined as the lowest degree of a nonconstant rational map from ''C'' to the projective line. In more algebraic terms, if ''C'' is defined over the field ''K'' and ''K''(''C'') denotes the function field of ''C'', then the gonality is the minimum value taken by the degrees of field extensions :''K''(''C'')/''K''(''f'') of the function field over its subfields generated by single functions ''f''. If ''K'' is algebraically closed, then the gonality is 1 precisely for curves of genus 0. The gonality is 2 for curves of genus 1 (elliptic curves) and for hyperelliptic curves (this includes all curves of genus 2). For genus ''g'' ≥ 3 it is no longer the case that the genus determines the gonality. The gonality of the generic curve of genus ''g'' is the floor function of :(''g'' + 3)/2. Trigonal curves are those with gonality 3, and this case gave rise to the name in general. Trigonal curves include the Picard curves, of ge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann–Roch Theorem
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus ''g'', in a way that can be carried over into purely algebraic settings. Initially proved as Riemann's inequality by , the theorem reached its definitive form for Riemann surfaces after work of Riemann's short-lived student . It was later generalized to algebraic curves, to higher-dimensional varieties and beyond. Preliminary notions A Riemann surface X is a topological space that is locally homeomorphic to an open subset of \Complex, the set of complex numbers. In addition, the transition maps between these open subsets are required to be holomorphic. The latter condition allows one to transfer the notions and methods of c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Degree Of A Finite Morphism
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the concepts of rational and birational maps are widely used as well; they are partial functions that are defined locally by rational fractions instead of polynomials. An algebraic variety has naturally the structure of a locally ringed space; a morphism between algebraic varieties is precisely a morphism of the underlying locally ringed spaces. Definition If ''X'' and ''Y'' are closed subvarieties of \mathbb^n and \mathbb^m (so they are affine varieties), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperelliptic Curve
In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus ''g'' > 1, given by an equation of the form y^2 + h(x)y = f(x) where ''f''(''x'') is a polynomial of degree ''n'' = 2''g'' + 1 > 4 or ''n'' = 2''g'' + 2 > 4 with ''n'' distinct roots, and ''h''(''x'') is a polynomial of degree 3. Therefore, in giving such an equation to specify a non-singular curve, it is almost always assumed that a non-singular model (also called a smooth completion), equivalent in the sense of birational geometry, is meant. To be more precise, the equation defines a quadratic extension of C(''x''), and it is that function field that is meant. The singular point at infinity can be removed (since this is a curve) by the normalization (integral closure) process. It turns out that after doing this, there is an open cover of the curve by two affine charts: the one already given by y^2 = f(x) and another one given by w^2 = v^f(1/v) . The glueing maps between the two charts are given by ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Genus (mathematics)
In mathematics, genus (: genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1. Topology Orientable surfaces The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic \chi, via the relationship \chi=2-2g for closed surfaces, where g is the genus. For surfaces with b boundary components, the equation reads \chi=2-2g-b. In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]