Change Of Variables (PDE)
   HOME





Change Of Variables (PDE)
Often a partial differential equation can be reduced to a simpler form with a known solution by a suitable change of variables. The article discusses change of variable for PDEs below in two ways: #by example; #by giving the theory of the method. Explanation by example For example, the following simplified form of the Black–Scholes PDE : \frac + \frac S^2\frac + S\frac - V = 0. is reducible to the heat equation : \frac = \frac by the change of variables: : V(S,t) = v(x(S),\tau(t)) : x(S) = \ln(S) : \tau(t) = \frac (T - t) : v(x,\tau)=\exp(-(1/2)x-(9/4)\tau) u(x,\tau) in these steps: * Replace V(S,t) by v(x(S),\tau(t)) and apply the chain rule to get ::\frac\left(-2v(x(S),\tau)+2 \frac \frac +S\left(\left(2 \frac + S\frac\right) \frac + S \left(\frac\right)^2 \frac\right)\right)=0. * Replace x(S) and \tau(t) by \ln(S) and \frac(T-t) to get ::\frac\left( -2v(\ln(S),\frac(T-t)) -\frac +\frac +\frac\right)=0. * Replace \ln(S) and \frac(T-t) by x( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to how is thought of as an unknown number solving, e.g., an algebraic equation like . However, it is usually impossible to write down explicit formulae for solutions of partial differential equations. There is correspondingly a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity and stability. Among the many open questions are the existence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Change Of Variables
In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem. Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation (chain rule) or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial: :x^6 - 9 x^3 + 8 = 0. Sixth-degree polynomial equations are generally impossible to solve in terms of radicals (see Abel–Ruffini theorem). This particular equation, however, may be written :(x^3)^2-9(x^3)+8=0 (this is a simple case of a polynomial decomposition). Thus the equation may be simplified by defining a new variable u = x^3. Subs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heat Equation
In mathematics and physics (more specifically thermodynamics), the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in many parts of both pure and applied mathematics. Definition Given an open subset of and a subinterval of , one says that a function is a solution of the heat equation if : \frac = \frac + \cdots + \frac, where denotes a general point of the domain. It is typical to refer to as time and as spatial variables, even in abstract contexts where these phrases fail to have their intuitive meaning. The collection of spatial variables is often referred to simply as . For any given value of , the right-hand side of the equation is the Laplace operator, Laplacian of the function . As such, the heat equation is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chain Rule
In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x)=f(g(x)) for every , then the chain rule is, in Lagrange's notation, h'(x) = f'(g(x)) g'(x). or, equivalently, h'=(f\circ g)'=(f'\circ g)\cdot g'. The chain rule may also be expressed in Leibniz's notation. If a variable depends on the variable , which itself depends on the variable (that is, and are dependent variables), then depends on as well, via the intermediate variable . In this case, the chain rule is expressed as \frac = \frac \cdot \frac, and \left.\frac\_ = \left.\frac\_ \cdot \left. \frac\_ , for indicating at which points the derivatives have to be evaluated. In integral, integration, the counterpart to the chain rule is the substitution rule. Intuitive explanation Intuitively, the chain rule states that knowing t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bijection
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivalently, a bijection is a relation between two sets such that each element of either set is paired with exactly one element of the other set. A function is bijective if it is invertible; that is, a function f:X\to Y is bijective if and only if there is a function g:Y\to X, the ''inverse'' of , such that each of the two ways for composing the two functions produces an identity function: g(f(x)) = x for each x in X and f(g(y)) = y for each y in Y. For example, the ''multiplication by two'' defines a bijection from the integers to the even numbers, which has the ''division by two'' as its inverse function. A function is bijective if and only if it is both injective (or ''one-to-one'')—meaning that each element in the codomain is mappe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Operator
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative. Definition Given a nonnegative integer ''m'', an order-m linear differential operator is a map P from a function space \mathcal_1 on \mathbb^n to another function space \mathcal_2 that can be written as: P = \sum_a_\alpha(x) D^\alpha\ , where \alpha = (\alpha_1,\alpha_2,\cdots,\alpha_n) is a multi-index of non-negative integers, , \alpha, = \alpha_1 + \alpha_2 + \cdots + \alpha_n, and for each \alpha, a_\alpha(x) is a function on some open domain in ''n''-dimensional space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Adaptive Moving Mesh Methods
Adaptation, in biology, is the process or trait by which organisms or population better match their environment Adaptation may also refer to: Arts * Adaptation (arts), a transfer of a work of art from one medium to another ** Film adaptation, a story from another work, adapted into a film ** Literary adaptation, a story from a literary source, adapted into another work ** Novelization, the adaptation of another work into a novel ** Theatrical adaptation, a story from another work, adapted into a play * ''Adaptation'' (film), a 2002 film by Spike Jonze * "Adaptation" (''The Walking Dead''), a television episode *''Adaptation'', a 2012 novel by Malinda Lo *"Adaptation", a song by the Weekend from his 2013 album ''Kiss Land'' Biology and medicine * Adaptation (eye), the eye's adjustment to light ** Chromatic adaptation, visual systems' adjustments to changes in illumination for preservation of colors ** Prism adaptation, sensory-motor adjustments after the visual field has been ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vladimir Arnold
Vladimir Igorevich Arnold (or Arnol'd; , ; 12 June 1937 – 3 June 2010) was a Soviet and Russian mathematician. He is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, and contributed to several areas, including geometrical theory of dynamical systems, algebra, catastrophe theory, topology, real algebraic geometry, symplectic geometry, differential equations, classical mechanics, differential-geometric approach to hydrodynamics, geometric analysis and singularity theory, including posing the ADE classification problem. His first main result was the solution of Hilbert's thirteenth problem in 1957 when he was 19. He co-founded three new branches of mathematics: topological Galois theory (with his student Askold Khovanskii), symplectic topology and KAM theory. Arnold was also a populariser of mathematics. Through his lectures, seminars, and as the author of several textbooks (such as '' Mathematical Methods of Clas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multivariable Calculus
Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables ('' multivariate''), rather than just one. Multivariable calculus may be thought of as an elementary part of calculus on Euclidean space. The special case of calculus in three dimensional space is often called ''vector calculus''. Introduction In single-variable calculus, operations like differentiation and integration are made to functions of a single variable. In multivariate calculus, it is required to generalize these to multiple variables, and the domain is therefore multi-dimensional. Care is therefore required in these generalizations, because of two key differences between 1D and higher dimensional spaces: # There are infinite ways to approach a single point in higher dimensions, as opposed to two (from the positive and negative direct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]