HOME





Category Of Presheaves
In category theory, a branch of mathematics, a presheaf on a category C is a functor F\colon C^\mathrm\to\mathbf. If C is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space. A morphism of presheaves is defined to be a natural transformation of functors. This makes the collection of all presheaves on C into a category, and is an example of a functor category. It is often written as \widehat = \mathbf^ and it is called the category of presheaves on C. A functor into \widehat is sometimes called a profunctor. A presheaf that is naturally isomorphic to the contravariant hom-functor Hom(–, ''A'') for some object ''A'' of C is called a representable presheaf. Some authors refer to a functor F\colon C^\mathrm\to\mathbf as a \mathbf-valued presheaf. Examples * A simplicial set is a Set-valued presheaf on the simplex category C=\Delta. * A directed multigraph is a presheaf on the category ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplex Category
In mathematics, the simplex category (or simplicial category or nonempty finite ordinal category) is the category of non-empty finite ordinals and order-preserving maps. It is used to define simplicial and cosimplicial objects. Formal definition The simplex category is usually denoted by \Delta. There are several equivalent descriptions of this category. \Delta can be described as the category of ''non-empty finite ordinals'' as objects, thought of as totally ordered sets, and ''(non-strictly) order-preserving functions'' as morphisms. The objects are commonly denoted = \ (so that is the ordinal n+1 ). The category is generated by coface and codegeneracy maps, which amount to inserting or deleting elements of the orderings. (See simplicial set for relations of these maps.) A simplicial object is a presheaf on \Delta, that is a contravariant functor from \Delta to another category. For instance, simplicial sets are contravariant with the codomain category being the catego ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Limit (category Theory)
In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as product (category theory), products, pullback (category theory), pullbacks and inverse limits. The duality (category theory), dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushout (category theory), pushouts and direct limits. Limits and colimits, like the strongly related notions of universal property, universal properties and adjoint functors, exist at a high level of abstraction. In order to understand them, it is helpful to first study the specific examples these concepts are meant to generalize. Definition Limits and colimits in a category (mathematics), category C are defined by means of diagrams in C. Formally, a diagram (category theory), diagram of shape J in C is a functor from J to C: :F:J\to C. The category J is thought of as an index category, and the diagram F is tho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hom Functor
In mathematics, specifically in category theory, hom-sets (i.e. sets of morphisms between object (category theory), objects) give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics. Formal definition Let ''C'' be a locally small category (i.e. a category (mathematics), category for which hom-classes are actually Set (mathematics), sets and not proper classes). For all objects ''A'' and ''B'' in ''C'' we define two functors to the category of sets as follows: : The functor Hom(–, ''B'') is also called the ''functor of points'' of the object ''B''. Note that fixing the first argument of Hom naturally gives rise to a covariant functor and fixing the second argument naturally gives a contravariant functor. This is an artifact of the way in which one must compose the morphisms. The pair of functors Hom(''A'', –) and Hom(–, ''B'') are related in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yoneda Embedding
In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a miniature category with just one object and only isomorphisms). It also generalizes the information-preserving relation between a term and its Continuation-passing style, continuation-passing style transformation from programming language theory. It allows the Subcategory#Embeddings, embedding of any locally small category into a category of functors (Functor#Covariance and contravariance, contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Full And Faithful Functors
In category theory, a faithful functor is a functor that is injective on hom-sets, and a full functor is surjective on hom-sets. A functor that has both properties is called a fully faithful functor. Formal definitions Explicitly, let ''C'' and ''D'' be (locally small) categories and let ''F'' : ''C'' → ''D'' be a functor from ''C'' to ''D''. The functor ''F'' induces a function :F_\colon\mathrm_(X,Y)\rightarrow\mathrm_(F(X),F(Y)) for every pair of objects ''X'' and ''Y'' in ''C''. The functor ''F'' is said to be *faithful if ''F''''X'',''Y'' is injectiveJacobson (2009), p. 22 *full if ''F''''X'',''Y'' is surjectiveMac Lane (1971), p. 14 *fully faithful (= full and faithful) if ''F''''X'',''Y'' is bijective for each ''X'' and ''Y'' in ''C''. Properties A faithful functor need not be injective on objects or morphisms. That is, two objects ''X'' and ''X''′ may map to the same object in ''D'' (which is why the range of a full and faithful functor is not necessarily isomorphi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Quantifier
In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", "for every", or "given an arbitrary element". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable. It is usually denoted by the turned A (∀) logical operator symbol, which, when used together with a predicate variable, is called a universal quantifier ("", "", or sometimes by "" alone). Universal quantification is distinct from ''existential'' quantification ("there exists"), which only asserts that the property or relation holds for at least one member of the domain. Quantification in general is covered in the article on quantification (logic). The universal quantifier is e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Right Adjoint
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e., constructions of objects having a certain universal property), such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology. By definition, an adjunction between categories \mathcal and \mathcal is a pair of functors (assumed to be covariant) :F: \mathcal \rightarrow \mathcal and G: \mathcal \rightarrow \mathcal and, for all objects c in \mathcal and d in \mathcal, a bijection between the respective morphism sets :\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heyting Algebra
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' called ''implication'' such that (''c'' ∧ ''a'') ≤ ''b'' is equivalent to ''c'' ≤ (''a'' → ''b''). From a logical standpoint, ''A'' → ''B'' is by this definition the weakest proposition for which modus ponens, the inference rule ''A'' → ''B'', ''A'' ⊢ ''B'', is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced in 1930 by Arend Heyting to formalize intuitionistic logic. Heyting algebras are distributive lattices. Every Boolean algebra is a Heyting algebra when ''a'' → ''b'' is defined as ¬''a'' ∨ ''b'', as is every complete distributive lattice satisfying a one-sided infinite distributive law when ''a'' → ''b'' is taken to be t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subobject
In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory,Mac Lane, p. 126 and subspaces from topology. Since the detailed structure of objects is immaterial in category theory, the definition of subobject relies on a morphism that describes how one object sits inside another, rather than relying on the use of elements. The dual concept to a subobject is a . This generalizes concepts such as quotient sets, quotient groups, quotient spaces, quotient graphs, etc. Definitions An appropriate categorical definition of "subobject" may vary with context, depending on the goal. One common definition is as follows. In detail, let ''A'' be an object of some category. Given two monomorphisms :u: S \to A \ \text \ v: T\to A with codomain ''A'', we define an equivalence relation by u \equiv v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cartesian Closed
In category theory, a Category (mathematics), category is Cartesian closed if, roughly speaking, any morphism defined on a product (category theory), product of two Object (category theory), objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal category, closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum computation, quantum and classical computation. Etymology Named after René Descartes (1596–1650), French philosopher, mathematician, and scientist, whose formulation of analytic geometry gave rise to the concept of Cartesian product, which was later generalized to the notion of categorical product. Definition The category C is called Cartesian closed iff it satisfies the following three propert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Small Category
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]