HOME





Bondareva–Shapley Theorem
The Bondareva–Shapley theorem, in game theory, describes a necessary and sufficient condition for the non-emptiness of the core of a cooperative game in characteristic function form. Specifically, the game's core is non-empty if and only if the game is ''balanced''. The Bondareva–Shapley theorem implies that market games and convex games have non-empty cores. The theorem was formulated independently by Olga Bondareva and Lloyd Shapley in the 1960s. Theorem Let the pair ( N, v) be a cooperative game in characteristic function form, where N is the set of players and where the ''value function'' v: 2^N \to \mathbb is defined on N's power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ... (the set of all subsets of N). The core of ( N, v ) is non-empty if and only if for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Game Theory
Game theory is the study of mathematical models of strategic interactions. It has applications in many fields of social science, and is used extensively in economics, logic, systems science and computer science. Initially, game theory addressed two-person zero-sum games, in which a participant's gains or losses are exactly balanced by the losses and gains of the other participant. In the 1950s, it was extended to the study of non zero-sum games, and was eventually applied to a wide range of Human behavior, behavioral relations. It is now an umbrella term for the science of rational Decision-making, decision making in humans, animals, and computers. Modern game theory began with the idea of mixed-strategy equilibria in two-person zero-sum games and its proof by John von Neumann. Von Neumann's original proof used the Brouwer fixed-point theorem on continuous mappings into compact convex sets, which became a standard method in game theory and mathematical economics. His paper was f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Necessary And Sufficient Condition
In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If then ", is necessary for , because the truth of is guaranteed by the truth of . (Equivalently, it is impossible to have without , or the falsity of ensures the falsity of .) Similarly, is sufficient for , because being true always implies that is true, but not being true does not always imply that is not true. In general, a necessary condition is one (possibly one of several conditions) that must be present in order for another condition to occur, while a sufficient condition is one that produces the said condition. The assertion that a statement is a "necessary ''and'' sufficient" condition of another means that the former statement is true if and only if the latter is true. That is, the two statements must be either simultaneously true, or simultaneously false. In ordinary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empty Set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called ''non-empty''. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø () in the Danish orthography, Danish and Norwegian orthography, Norwegian a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Core (economics)
In cooperative game theory, the core is the set of feasible allocations or imputations where no coalition of agents can benefit by breaking away from the grand coalition. An allocation is said to be in the ''core'' of a game if there is no coalition that can improve upon it. The core is then the set of all feasible allocations. Origin The idea of the core already appeared in the writings of , at the time referred to as the ''contract curve''. Even though von Neumann and Morgenstern considered it an interesting concept, they only worked with zero-sum games where the core is always empty. The modern definition of the core is due to Gillies. Definition Consider a transferable utility cooperative game (N,v) where N denotes the set of players and v is the characteristic function. An imputation x\in\mathbb^N is ''dominated'' by another imputation y if there exists a coalition C, such that each player in C weakly-prefers y (x_i\leq y_i for all i\in C) and there exists i\in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cooperative Game Theory
In game theory, a cooperative game (or coalitional game) is a game with groups of players who form binding “coalitions” with external enforcement of cooperative behavior (e.g. through contract law). This is different from non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing (e.g. through credible threats). Cooperative games are analysed by focusing on coalitions that can be formed, and the joint actions that groups can take and the resulting collective payoffs. Mathematical definition A cooperative game is given by specifying a value for every coalition. Formally, the coalitional game consists of a finite set of players N , called the ''grand coalition'', and a ''characteristic function'' v : 2^N \to \mathbb from the set of all possible coalitions of players to a set of payments that satisfies v( \emptyset ) = 0 . The function describes how much collective payoff a set of players can gain by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Market Game
In economic theory, a strategic market game, also known as a market game, is a game explaining price formation through game theory, typically implementing a general equilibrium outcome as a Nash equilibrium. Fundamentally in a strategic market game, markets work in a strategic way that does not (directly) involve price but can indirectly influence it. The key ingredients to modelling strategic market games are the definition of trading posts (or markets), and their price formation mechanisms as a function of the actions of players. A leading example is the Lloyd Shapley and Martin Shubik trading post game. Shapley-Shubik use a numeraire and trading posts for the exchange of goods. The relative price of each good in terms of the numeraire is determined as the ratio of the amount of the numeraire brought at each post, to the quantity of goods offered for sale at that post. In this way, every agent is allocated goods in proportion to his bids, so that posts always clear. Pradeep Dubey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Set
In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary (topology), boundary of a convex set in the plane is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval (mathematics), interval with the property that its epigraph (mathematics), epigraph (the set of points on or above the graph of a function, graph of the function) is a convex set. Convex minimization is a subfield of mathematical optimization, optimization that studies the problem of minimizing convex functions over convex sets. The branch of mathematics devoted to the study of properties of convex sets and convex f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Olga Bondareva
Olga Nikolaevna Bondareva (April 27, 1937 – December 9, 1991) was a distinguished USSR, Soviet mathematician and economist. She contributed to the fields of mathematical economics, especially game theory. Bondareva is best known as one of the two Multiple discovery, independent discoverers of the Bondareva–Shapley theorem. Biography In 1954 she entered the Mathematics and Mechanics Faculty of Leningrad State University, receiving her ''Candidate of Sciences'' degree in 1963 under the supervision of Nikolai Nikolayevich Vorobyov (mathematician), Nikolai Vorobyov. She defended her ''Doctor of Sciences'' degree in 1984 at the Faculty of Computational Mathematics and Cybernetics, Moscow State University. From October 1959 to April 1972 she worked as a junior researcher, then associate professor (in operations research), and then a senior researcher at the Mathematics and Mechanics Faculty of Leningrad State University. From June 1972 to July 1984 was a senior resea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lloyd Shapley
Lloyd Stowell Shapley (; June 2, 1923 – March 12, 2016) was an American mathematician and Nobel Memorial Prize-winning economist. He contributed to the fields of mathematical economics and especially game theory. Shapley is generally considered one of the most important contributors to the development of game theory since the work of von Neumann and Morgenstern. With Alvin E. Roth, Shapley won the 2012 Nobel Memorial Prize in Economic Sciences "for the theory of stable allocations and the practice of market design." Life and career Lloyd Shapley was born on June 2, 1923, in Cambridge, Massachusetts, one of the sons of astronomers Harlow Shapley and Martha Betz Shapley, both from Missouri. He attended Phillips Exeter Academy and was a student at Harvard when he was drafted in 1943. He served in the United States Army Air Corps in Chengdu, China and received the Bronze Star decoration for breaking the Soviet weather code. After the war, Shapley returned to Harvard and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordered Pair
In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unordered pair'', denoted , always equals the unordered pair . Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors. (Technically, this is an abuse of terminology since an ordered pair need not be an element of a vector space.) The entries of an ordered pair can be other ordered pairs, enabling the recursive definition of ordered ''n''-tuples (ordered lists of ''n'' objects). For example, the ordered triple (''a'',''b'',''c'') can be defined as (''a'', (''b'',''c'')), i.e., as one pair nested in another. In the ordered pair (''a'', ''b''), the object ''a'' is called the ''first entry'', and the object ''b'' the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as well as the reason of the notation denoting the power set are demonstrated in the below. : An indicator function or a characteristic function of a subset of a set with the cardinality is a function from to the two-element set , denoted as , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]