BBM92 Protocol
BBM92 is a quantum key distribution without Bell's theorem developed using polarized entangled photon pairs by Charles H. Bennett , Gilles Brassard and N. David Mermin in 1992. It is named after the trio's surnames as (Bennett, Brassard and Mermin, BBM92). It uses decoy state of multiple photon instead of single. The key differences in E91 protocol and B92 uses only two states instead of four states used by E91 protocol and BB84 It is used for non orthogonal quantum transmission 0 can be encrypted as 0 degree and 1 as 45 degree in diagonal basis BB92 protocol. There are no eavesdropping Eavesdropping is the act of secretly or stealthily listening to the private conversation or communications of others without their consent in order to gather information. Etymology The verb ''eavesdrop'' is a back-formation from the noun ''eaves ... secure and hack proof {{Cite web , title=BBM92 protocol , url=https://www0.gsb.columbia.edu/faculty/azeevi/PAPERS/QKD_PRA_final.pdf http ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Key Distribution
Quantum key distribution (QKD) is a secure communication method which implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages. It is often incorrectly called quantum cryptography, as it is the best-known example of a quantum cryptographic task. An important and unique property of quantum key distribution is the ability of the two communicating users to detect the presence of any third party trying to gain knowledge of the key. This results from a fundamental aspect of quantum mechanics: the process of measuring a quantum system in general disturbs the system. A third party trying to eavesdrop on the key must in some way measure it, thus introducing detectable anomalies. By using quantum superpositions or quantum entanglement and transmitting information in quantum states, a communication system can be implemented that dete ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charles H
Charles is a masculine given name predominantly found in English and French speaking countries. It is from the French form ''Charles'' of the Proto-Germanic name (in runic alphabet) or ''*karilaz'' (in Latin alphabet), whose meaning was "free man". The Old English descendant of this word was '' Ċearl'' or ''Ċeorl'', as the name of King Cearl of Mercia, that disappeared after the Norman conquest of England. The name was notably borne by Charlemagne (Charles the Great), and was at the time Latinized as ''Karolus'' (as in ''Vita Karoli Magni''), later also as '' Carolus''. Some Germanic languages, for example Dutch and German, have retained the word in two separate senses. In the particular case of Dutch, ''Karel'' refers to the given name, whereas the noun ''kerel'' means "a bloke, fellow, man". Etymology The name's etymology is a Common Germanic noun ''*karilaz'' meaning "free man", which survives in English as churl (< Old English ''ċeorl''), which developed i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gilles Brassard
Gilles Brassard, is a faculty member of the Université de Montréal, where he has been a Full Professor since 1988 and Canada Research Chair since 2001. Education and early life Brassard received a Ph.D. in Computer Science from Cornell University in 1979, working in the field of cryptography with John Hopcroft as his advisor. Research Brassard is best known for his fundamental work in quantum cryptography, quantum teleportation, quantum entanglement distillation, quantum pseudo-telepathy, and the classical simulation of quantum entanglement.Herzberg runner-up: Gilles Brassard [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decoy State
Within quantum cryptography, the Decoy state quantum key distribution (QKD) protocol is the most widely implemented QKD scheme. Practical QKD systems use multi-photon sources, in contrast to the standard BB84 protocol, making them susceptible to photon number splitting (PNS) attacks. This would significantly limit the secure transmission rate or the maximum channel length in practical QKD systems. In decoy state technique, this fundamental weakness of practical QKD systems is addressed by using multiple intensity levels at the transmitter's source, i.e. qubits are transmitted by Alice using randomly chosen intensity levels (one signal state and several decoy states), resulting in varying photon number statistics throughout the channel. At the end of the transmission Alice announces publicly which intensity level has been used for the transmission of each qubit. A successful PNS attack requires maintaining the bit error rate (BER) at the receiver's end, which can not be accomplish ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
E91 Protocol
Quantum key distribution (QKD) is a secure communication method which implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages. It is often incorrectly called quantum cryptography, as it is the best-known example of a quantum cryptographic task. An important and unique property of quantum key distribution is the ability of the two communicating users to detect the presence of any third party trying to gain knowledge of the key. This results from a fundamental aspect of quantum mechanics: the process of measuring a quantum system in general disturbs the system. A third party trying to eavesdrop on the key must in some way measure it, thus introducing detectable anomalies. By using quantum superpositions or quantum entanglement and transmitting information in quantum states, a communication system can be implemented that detec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
BB84
BB84 is a quantum key distribution scheme developed by Charles Bennett and Gilles Brassard in 1984. It is the first quantum cryptography protocol. The protocol is provably secure, relying on two conditions: (1) the quantum property that information gain is only possible at the expense of disturbing the signal if the two states one is trying to distinguish are not orthogonal (see no-cloning theorem); and (2) the existence of an authenticated public classical channel. It is usually explained as a method of securely communicating a private key from one party to another for use in one-time pad encryption.''Quantum Computing and Quantum Information'', Michael Nielsen and Isaac Chuang, Cambridge University Press 2000 Description In the BB84 scheme, Alice wishes to send a private key to Bob. She begins with two strings of bits, a and b, each n bits long. She then encodes these two strings as a tensor product In mathematics, the tensor product V \otimes W of two vector spaces ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eavesdropping
Eavesdropping is the act of secretly or stealthily listening to the private conversation or communications of others without their consent in order to gather information. Etymology The verb ''eavesdrop'' is a back-formation from the noun ''eavesdropper'' ("a person who eavesdrops"), which was formed from the related noun ''eavesdrop'' ("the dripping of water from the eaves of a house; the ground on which such water falls"). An eavesdropper was someone who would hang from the eave of a building so as to hear what is said within. The PBS documentaries ''Inside the Court of Henry VIII'' (April 8, 2015) and ''Secrets of Henry VIII’s Palace'' (June 30, 2013) include segments that display and discuss "eavedrops", carved wooden figures Henry VIII had built into the eaves (overhanging edges of the beams in the ceiling) of Hampton Court to discourage unwanted gossip or dissension from the King's wishes and rule, to foment paranoia and fear, and demonstrate that everything said there was ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Cryptography
Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical (i.e. non-quantum) communication. For example, it is impossible to copy data encoded in a quantum state. If one attempts to read the encoded data, the quantum state will be changed due to wave function collapse (no-cloning theorem). This could be used to detect eavesdropping in quantum key distribution (QKD). History In the early 1970s, Stephen Wiesner, then at Columbia University in New York, introduced the concept of quantum conjugate coding. His seminal paper titled "Conjugate Coding" was rejected by the IEEE Informati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |