HOME
*





Absolute Value (algebra)
In algebra, an absolute value (also called a valuation, magnitude, or norm, although " norm" usually refers to a specific kind of absolute value on a field) is a function which measures the "size" of elements in a field or integral domain. More precisely, if ''D'' is an integral domain, then an absolute value is any mapping , x, from ''D'' to the real numbers R satisfying: It follows from these axioms that , 1,  = 1 and , -1,  = 1. Furthermore, for every positive integer ''n'', :, ''n'',  = , 1 + 1 + ... + 1 (''n'' times),  = , −1 − 1 − ... − 1 (''n'' times),  ≤ ''n''. The classical "absolute value" is one in which, for example, , 2, =2, but many other functions fulfill the requirements stated above, for instance the square root of the classical absolute value (but not the square thereof). An absolute value induces a metric (and thus a topology) by d(f,g) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Irreducible Element
In algebra, an irreducible element of a domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. Relationship with prime elements Irreducible elements should not be confused with prime elements. (A non-zero non-unit element a in a commutative ring R is called prime if, whenever a \mid bc for some b and c in R, then a \mid b or a \mid c.) In an integral domain, every prime element is irreducible,Sharpe (1987) p.54 but the converse is not true in general. The converse is true for unique factorization domains (or, more generally, GCD domains). Moreover, while an ideal generated by a prime element is a prime ideal, it is not true in general that an ideal generated by an irreducible element is an irreducible ideal. However, if D is a GCD domain and x is an irreducible element of D, then as noted above x is prime, and so the ideal generated by x is a prime (hence irreducible) ideal of D. Example In the quad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map f:X\rightarrow Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of category theory, a structure-preserving map is called a morphism. The fact that a map f:X\rightarrow Y is an embedding is often indicated by the use of a "hooked arrow" (); thus: f : X \hookrightarrow Y. (On the other hand, this notation is sometimes reserved for inclusion maps.) Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Ring
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring and a two-sided ideal in , a new ring, the quotient ring , is constructed, whose elements are the cosets of in subject to special and operations. (Only the fraction slash "/" is used in quotient ring notation, not a horizontal fraction bar.) Quotient rings are distinct from the so-called "quotient field", or field of fractions, of an integral domain as well as from the more general "rings of quotients" obtained by localization. Formal quotient ring construction Given a ring and a two-sided ideal in , we may define an equivalence relation on as follows: : if and only if is in . Using the ideal properties, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prime Ideal
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime. Prime ideals for commutative rings An ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ideal in \Z. Examples * A simple example: In the ring R=\Z, the subset of even numbers is a prime ideal. * Given an integral do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cauchy Sequence
In mathematics, a Cauchy sequence (; ), named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite number of elements of the sequence are less than that given distance from each other. It is not sufficient for each term to become arbitrarily close to the term. For instance, in the sequence of square roots of natural numbers: a_n=\sqrt n, the consecutive terms become arbitrarily close to each other: a_-a_n = \sqrt-\sqrt = \frac d. (Actually, any m > \left(\sqrt + d\right)^2 suffices.) As a result, despite how far one goes, the remaining terms of the sequence never get close to ; hence the sequence is not Cauchy. The utility of Cauchy sequences lies in the fact that in a complete metric space (one where all such sequences are known to converge to a limit), the criterion for convergence depends only on the terms of the sequence itself, as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nicolas Bourbaki
Nicolas Bourbaki () is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure - PSL (ENS). Founded in 1934–1935, the Bourbaki group originally intended to prepare a new textbook in analysis. Over time the project became much more ambitious, growing into a large series of textbooks published under the Bourbaki name, meant to treat modern pure mathematics. The series is known collectively as the '' Éléments de mathématique'' (''Elements of Mathematics''), the group's central work. Topics treated in the series include set theory, abstract algebra, topology, analysis, Lie groups and Lie algebras. Bourbaki was founded in response to the effects of the First World War which caused the death of a generation of French mathematicians; as a result, young university instructors were forced to use dated texts. While teaching at the University of Strasbourg, Henri Cartan complained to his colleague André Weil of the inade ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Valuation (algebra)
In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field. Definition One starts with the following objects: *a field and its multiplicative group ''K''×, *an abelian totally ordered group . The ordering and group law on are extended to the set by the rules * for all ∈ , * for all ∈ . Then a valuation of is any map : which satisfies the following properties for all ''a'', ''b'' in ''K'': * if and only if , *, *, with equality if ''v''(''a'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic Number
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ostrowski's Theorem
In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers \Q is equivalent to either the usual real absolute value or a -adic absolute value. Definitions Raising an absolute value to a power less than 1 always results in another absolute value. Two absolute values , \cdot, and , \cdot, _* on a field ''K'' are defined to be equivalent if there exists a real number such that : \forall x \in K: \quad , x, _* = , x, ^c. The trivial absolute value on any field ''K'' is defined to be : , x, _0 := \begin 0 & x = 0, \\ 1 & x \ne 0. \end The real absolute value on the rationals \Q is the standard absolute value on the reals, defined to be : , x, _\infty := \begin x & x \ge 0, \\ -x & x 1, \\ (2) \quad \forall n \in \N \qquad , n, _* &\leq 1. \end It suffices for us to consider the valuation of integers greater than one. For, if we find c \in \R_+ for which , n, _* = , n, ^c_ for all naturals g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History of algebraic number theory Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two integers ''x'' and ''y'' such that their sum, and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]