HOME
*



picture info

ARINC 429
ARINC 429, "Mark33 Digital Information Transfer System (DITS)," is also known as the Aeronautical Radio INC. (ARINC) technical standard for the predominant avionics data bus used on most higher-end commercial and transport aircraft. It defines the physical and electrical interfaces of a two-wire data bus and a data protocol to support an aircraft's avionics local area network. Technical description Medium and Signaling ARINC 429 is a data transfer standard for aircraft avionics. It uses a self-clocking, self-synchronizing data bus protocol (Tx and Rx are on separate ports). The physical connection wires are twisted pairs carrying balanced differential signaling. Data words are 32 bits in length and most messages consist of a single data word. Messages are transmitted at either 12.5 or 100 kbit/s to other system elements that are monitoring the bus messages. The transmitter constantly transmits either 32-bit data words or the NULL state (0 Volts). A single wire pair is limited to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Endianness
In computing, endianness, also known as byte sex, is the order or sequence of bytes of a word of digital data in computer memory. Endianness is primarily expressed as big-endian (BE) or little-endian (LE). A big-endian system stores the most significant byte of a word at the smallest memory address and the least significant byte at the largest. A little-endian system, in contrast, stores the least-significant byte at the smallest address. Bi-endianness is a feature supported by numerous computer architectures that feature switchable endianness in data fetches and stores or for instruction fetches. Other orderings are generically called middle-endian or mixed-endian. Endianness may also be used to describe the order in which the bits are transmitted over a communication channel, e.g., big-endian in a communications channel transmits the most significant bits first. Bit-endianness is seldom used in other contexts. Etymology Danny Cohen introduced the terms ''big-en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




EDN (magazine)
''EDN'' is an electronics industry website and formerly a magazine owned by AspenCore Media, an Arrow Electronics company. The editor-in-chief is Majeed Ahmad. ''EDN'' was published monthly until, in April 2013, EDN announced that the print edition would cease publication after the June 2013 issue. History The first issue of ''Electrical Design News'', the original name, was published in May 1956 by Rogers Corporation of Englewood, Colorado. In January 1961, Cahners Publishing Company, Inc., of Boston, acquired Rogers Publishing Company. In February 1966, Cahners sold 40% of its company to International Publishing Company in London In 1970, the Reed Group merged with International Publishing Corporation and changed its name to Reed International Limited. Acquisition of ''EEE'' magazine Cahners Publishing Company acquired ''Electronic Equipment Engineering'', a monthly magazine, in March 1971 and discontinued it. In doing so, Cahners folded ''EEE's'' best features into ''EDN'', an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary-coded Decimal
In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight. Sometimes, special bit patterns are used for a sign or other indications (e.g. error or overflow). In byte-oriented systems (i.e. most modern computers), the term ''unpacked'' BCD usually implies a full byte for each digit (often including a sign), whereas ''packed'' BCD typically encodes two digits within a single byte by taking advantage of the fact that four bits are enough to represent the range 0 to 9. The precise 4-bit encoding, however, may vary for technical reasons (e.g. Excess-3). The ten states representing a BCD digit are sometimes called '' tetrades'' (for the nibble typically needed to hold them is also known as a tetrade) while the unused, don't care-states are named , ''pseudo-decimals'' or ''pseudo-decimal digits''. BCD's main virtue, in comparison to binary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Two's Complement
Two's complement is a mathematical operation to reversibly convert a positive binary number into a negative binary number with equivalent (but negative) value, using the binary digit with the greatest place value (the leftmost bit in big- endian numbers, rightmost bit in little-endian numbers) to indicate whether the binary number is positive or negative (the sign). It is used in computer science as the most common method of representing signed (positive, negative, and zero) integers on computers, and more generally, fixed point binary values. When the most significant bit is a one, the number is signed as negative. . Two's complement is executed by 1) inverting (i.e. flipping) all bits, then 2) adding a place value of 1 to the inverted number. For example, say the number −6 is of interest. +6 in binary is 0110 (the leftmost most significant bit is needed for the sign; positive 6 is not 110 because it would be interpreted as -2). Step one is to flip all bits, yielding 1001. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bit-field
A bit field is a data structure that consists of one or more adjacent bits which have been allocated for specific purposes, so that any single bit or group of bits within the structure can be set or inspected. A bit field is most commonly used to represent integral types of known, fixed bit-width, such as single-bit Booleans. The meaning of the individual bits within the field is determined by the programmer; for example, the first bit in a bit field (located at the field's base address) is sometimes used to determine the state of a particular attribute associated with the bit field. Within CPUs and other logic devices, collections of bit fields called flags are commonly used to control or to indicate the outcome of particular operations. Processors have a status register that is composed of flags. For example if the result of an addition cannot be represented in the destination an arithmetic overflow is set. The flags can be used to decide subsequent operations, such as condit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bit-field
A bit field is a data structure that consists of one or more adjacent bits which have been allocated for specific purposes, so that any single bit or group of bits within the structure can be set or inspected. A bit field is most commonly used to represent integral types of known, fixed bit-width, such as single-bit Booleans. The meaning of the individual bits within the field is determined by the programmer; for example, the first bit in a bit field (located at the field's base address) is sometimes used to determine the state of a particular attribute associated with the bit field. Within CPUs and other logic devices, collections of bit fields called flags are commonly used to control or to indicate the outcome of particular operations. Processors have a status register that is composed of flags. For example if the result of an addition cannot be represented in the destination an arithmetic overflow is set. The flags can be used to decide subsequent operations, such as condit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Signed Number Representations
In computing, signed number representations are required to encode negative numbers in binary number systems. In mathematics, negative numbers in any base are represented by prefixing them with a minus sign ("−"). However, in RAM or CPU registers, numbers are represented only as sequences of bits, without extra symbols. The four best-known methods of extending the binary numeral system to represent signed numbers are: sign–magnitude, ones' complement, two's complement, and offset binary. Some of the alternative methods use implicit instead of explicit signs, such as negative binary, using the base −2. Corresponding methods can be devised for other bases, whether positive, negative, fractional, or other elaborations on such themes. There is no definitive criterion by which any of the representations is universally superior. For integers, the representation used in most current computing devices is two's complement, although the Unisys ClearPath Dorado series mainframe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Two's Complement
Two's complement is a mathematical operation to reversibly convert a positive binary number into a negative binary number with equivalent (but negative) value, using the binary digit with the greatest place value (the leftmost bit in big- endian numbers, rightmost bit in little-endian numbers) to indicate whether the binary number is positive or negative (the sign). It is used in computer science as the most common method of representing signed (positive, negative, and zero) integers on computers, and more generally, fixed point binary values. When the most significant bit is a one, the number is signed as negative. . Two's complement is executed by 1) inverting (i.e. flipping) all bits, then 2) adding a place value of 1 to the inverted number. For example, say the number −6 is of interest. +6 in binary is 0110 (the leftmost most significant bit is needed for the sign; positive 6 is not 110 because it would be interpreted as -2). Step one is to flip all bits, yielding 1001. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binary Coded Decimal
In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight. Sometimes, special bit patterns are used for a sign or other indications (e.g. error or overflow). In byte-oriented systems (i.e. most modern computers), the term ''unpacked'' BCD usually implies a full byte for each digit (often including a sign), whereas ''packed'' BCD typically encodes two digits within a single byte by taking advantage of the fact that four bits are enough to represent the range 0 to 9. The precise 4-bit encoding, however, may vary for technical reasons (e.g. Excess-3). The ten states representing a BCD digit are sometimes called '' tetrades'' (for the nibble typically needed to hold them is also known as a tetrade) while the unused, don't care-states are named , ''pseudo-decimals'' or ''pseudo-decimal digits''. BCD's main virtue, in comparison to binary p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parity Bit
A parity bit, or check bit, is a bit added to a string of binary code. Parity bits are a simple form of error detecting code. Parity bits are generally applied to the smallest units of a communication protocol, typically 8-bit octets (bytes), although they can also be applied separately to an entire message string of bits. The parity bit ensures that the total number of 1-bits in the string is even or odd. Accordingly, there are two variants of parity bits: even parity bit and odd parity bit. In the case of even parity, for a given set of bits, the bits whose value is 1 are counted. If that count is odd, the parity bit value is set to 1, making the total count of occurrences of 1s in the whole set (including the parity bit) an even number. If the count of 1s in a given set of bits is already even, the parity bit's value is 0. In the case of odd parity, the coding is reversed. For a given set of bits, if the count of bits with a value of 1 is even, the parity bit value is set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Octet (computing)
The octet is a unit of digital information in computing and telecommunications that consists of eight bits. The term is often used when the term byte might be ambiguous, as the byte has historically been used for storage units of a variety of sizes. The term ''octad(e)'' for eight bits is no longer common. Definition The international standard IEC 60027-2, chapter 3.8.2, states that a byte is an octet of bits. However, the unit byte has historically been platform-dependent and has represented various storage sizes in the history of computing. Due to the influence of several major computer architectures and product lines, the byte became overwhelmingly associated with eight bits. This meaning of ''byte'' is codified in such standards as ISO/IEC 80000-13. While ''byte'' and ''octet'' are often used synonymously, those working with certain legacy systems are careful to avoid ambiguity. Octets can be represented using number systems of varying bases such as the he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shift Register
A shift register is a type of digital circuit using a cascade of flip-flops where the output of one flip-flop is connected to the input of the next. They share a single clock signal, which causes the data stored in the system to shift from one location to the next. By connecting the last flip-flop back to the first, the data can cycle within the shifters for extended periods, and in this form they were used as a form of computer memory. In this role they are very similar to the earlier delay-line memory systems and were widely used in the late 1960s and early 1970s to replace that form of memory. In most cases, several parallel shift registers would be used to build a larger memory pool known as a " bit array". Data was stored into the array and read back out in parallel, often as a computer word, while each bit was stored serially in the shift registers. There is an inherent trade-off in the design of bit arrays; putting more flip-flops in a row allows a single shifter to store mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]