HOME
*





AKS Primality Test
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic Determinism is a philosophical view, where all events are determined completely by previously existing causes. Deterministic theories throughout the history of philosophy have developed from diverse and sometimes overlapping motives and cons ... primality test, primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". The algorithm was the first that can provably determine whether any given number is Prime number, prime or Composite number, composite in polynomial time, without relying on mathematical conjectures such as the generalized Riemann hypothesis. The proof is also notable for not relying on the field of analysis (mathematics), analysis. In 2006 the authors received both the Gödel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deterministic Algorithm
In computer science, a deterministic algorithm is an algorithm that, given a particular input, will always produce the same output, with the underlying machine always passing through the same sequence of states. Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they can be run on real machines efficiently. Formally, a deterministic algorithm computes a mathematical function; a function has a unique value for any input in its domain, and the algorithm is a process that produces this particular value as output. Formal definition Deterministic algorithms can be defined in terms of a state machine: a ''state'' describes what a machine is doing at a particular instant in time. State machines pass in a discrete manner from one state to another. Just after we enter the input, the machine is in its ''initial state'' or ''start state''. If the machine is deterministic, this means that from this point onwards, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mersenne Number
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If is a composite number then so is . Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form for some prime . The exponents which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, ... and the resulting Mersenne primes are 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ... . Numbers of the form without the primality requirement may be called Mersenne numbers. Sometimes, however, Mersenne numbers are defined to have the additional requirement that be prime. The smallest composite Mersenne number with prime exponent ''n'' is . Mersenne primes were studied in antiquity because of their close connection to perfect numbers: the Euclid–Euler theorem as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers. Polynomial rings occur and are often fundamental in many parts of mathematics such as number theory, commutative algebra, and algebraic geometry. In ring theory, many classes of rings, such as unique factorization domains, regular rings, group rings, rings of formal power series, Ore polynomials, graded rings, have been introduced for generalizing some properties of polynomial rings. A closely related notion is tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coprime
In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also '' is prime to '' or '' is coprime with ''. The numbers 8 and 9 are coprime, despite the fact that neither considered individually is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both divisible by 3. The numerator and denominator of a reduced fraction are coprime, by definition. Notation and testing Standard notations for relatively prime integers and are: and . In their 1989 textbook '' Concrete Mathematics'', Ronald Graham, Donald Knuth, and Oren Patashnik proposed that the notation a\perp b be used to indicate that and are relatively prime and that the term "prime" be used instead of coprime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primality Certificate
In mathematics and computer science, a primality certificate or primality proof is a succinct, formal proof that a number is prime. Primality certificates allow the primality of a number to be rapidly checked without having to run an expensive or unreliable primality test. "Succinct" usually means that the proof should be at most polynomially larger than the number of digits in the number itself (for example, if the number has ''b'' bits, the proof might contain roughly ''b''2 bits). Primality certificates lead directly to proofs that problems such as primality testing and the complement of integer factorization lie in NP, the class of problems verifiable in polynomial time given a solution. These problems already trivially lie in co-NP. This was the first strong evidence that these problems are not NP-complete, since if they were, it would imply that NP is subset of co-NP, a result widely believed to be false; in fact, this was the first demonstration of a problem in NP inters ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Galactic Algorithm
A galactic algorithm is one that outperforms any other algorithm for problems that are sufficiently large, but where "sufficiently large" is so big that the algorithm is never used in practice. Galactic algorithms were so named by Richard Lipton and Ken Regan, because they will never be used on any data sets on Earth. Possible use cases Even if they are never used in practice, galactic algorithms may still contribute to computer science: * An algorithm, even if impractical, may show new techniques that may eventually be used to create practical algorithms. * Available computational power may catch up to the crossover point, so that a previously impractical algorithm becomes practical. * An impractical algorithm can still demonstrate that conjectured bounds can be achieved, or that proposed bounds are wrong, and hence advance the theory of algorithms. As Lipton states: Similarly, a hypothetical large but polynomial O\bigl(n^\bigr) algorithm for the Boolean satisfiability problem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hypothesis
A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories. Even though the words "hypothesis" and "theory" are often used interchangeably, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a provisionally accepted hypothesis proposed for further research in a process beginning with an educated guess or thought. A different meaning of the term ''hypothesis'' is used in formal logic, to denote the antecedent of a proposition; thus in the proposition "If ''P'', then ''Q''", ''P'' denotes the hypothesis (or antecedent); ''Q'' can be called a consequent. ''P'' is the assumption in a (possibly counterfactual) ''What If'' question. The adjective ''hypothetical'', meaning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baillie–PSW Primality Test
The Baillie–PSW primality test is a probabilistic primality testing algorithm that determines whether a number is composite or is a probable prime. It is named after Robert Baillie, Carl Pomerance, John Selfridge, and Samuel Wagstaff. The Baillie–PSW test is a combination of a strong Fermat probable prime test to base 2 and a strong Lucas probable prime test. The Fermat and Lucas test each have their own list of pseudoprimes, that is, composite numbers that pass the test. For example, the first ten strong pseudoprimes to base 2 are : 2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, and 52633 . The first ten strong Lucas pseudoprimes (with Lucas parameters (''P'', ''Q'') defined by Selfridge's Method A) are : 5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309, and 58519 . There is no known overlap between these lists of strong Fermat pseudoprimes and strong Lucas pseudoprimes, and there is even evidence that the numbers in these lists tend to be different k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Miller–Rabin Primality Test
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic primality test. Its probabilistic variant remains widely used in practice, as one of the simplest and fastest tests known. Gary L. Miller discovered the test in 1976; Miller's version of the test is deterministic, but its correctness relies on the unproven extended Riemann hypothesis. Michael O. Rabin modified it to obtain an unconditional probabilistic algorithm in 1980. Mathematical concepts Similarly to the Fermat and Solovay–Strassen tests, the Miller–Rabin primality test checks whether a specific property, which is known to hold for prime values, holds for the number under testing. Strong probable primes The property is the fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deterministic Algorithm
In computer science, a deterministic algorithm is an algorithm that, given a particular input, will always produce the same output, with the underlying machine always passing through the same sequence of states. Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they can be run on real machines efficiently. Formally, a deterministic algorithm computes a mathematical function; a function has a unique value for any input in its domain, and the algorithm is a process that produces this particular value as output. Formal definition Deterministic algorithms can be defined in terms of a state machine: a ''state'' describes what a machine is doing at a particular instant in time. State machines pass in a discrete manner from one state to another. Just after we enter the input, the machine is in its ''initial state'' or ''start state''. If the machine is deterministic, this means that from this point onwards, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Adleman–Pomerance–Rumely Primality Test
In computational number theory, the Adleman–Pomerance–Rumely primality test is an algorithm for determining whether a number is prime. Unlike other, more efficient algorithms for this purpose, it avoids the use of random numbers, so it is a deterministic primality test. It is named after its discoverers, Leonard Adleman, Carl Pomerance, and Robert Rumely. The test involves arithmetic in cyclotomic fields. It was later improved by Henri Cohen and Hendrik Willem Lenstra, commonly referred to as APR-CL. It can test primality of an integer ''n'' in time: : (\log n)^. Software implementations * UBASIC UBASIC is a freeware ( public domain software without source code) BASIC interpreter written by Yuji Kida at Rikkyo University in Japan, specialized for mathematical computing. Features UBASIC is a ready-to-run language that does not need to ... provides an implementation under the name APRT-CLE (APR Test CL extended) *factoring appletthat uses APR-CL on certain conditions ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Curve Primality Proving
In mathematics, elliptic curve primality testing techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by Shafi Goldwasser and Joe Kilian in 1986 and turned into an algorithm by A. O. L. Atkin the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and , in 1993. The concept of using elliptic curves in factorization had been developed by H. W. Lenstra in 1985, and the implications for its use in primality testing (and proving) followed quickly. Primality testing is a field that has been around since the time of Fermat, in whose time most algorithms were based on factoring, which become unwieldy with large input; modern algorithms treat the problems of determining whether a number is prime and what its factors are separately. It became of practical importance with the advent of modern cryptography. Although many curr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]