AC0
   HOME
*



picture info

AC0
AC0 is a complexity class used in circuit complexity. It is the smallest class in the AC hierarchy, and consists of all families of circuits of depth O(1) and polynomial size, with unlimited- fanin AND gates and OR gates (we allow NOT gates only at the inputs). It thus contains NC0, which has only bounded-fanin AND and OR gates. Example problems Integer addition and subtraction are computable in AC0, but multiplication is not (at least, not under the usual binary or base-10 representations of integers). Since it is a circuit class, like P/poly, AC0 also contains every unary language. Descriptive complexity From a descriptive complexity viewpoint, DLOGTIME-uniform AC0 is equal to the descriptive class FO+BIT of all languages describable in first-order logic with the addition of the BIT predicate, or alternatively by FO(+, ×), or by Turing machine in the logarithmic hierarchy. Separations In 1984 Furst, Saxe, and Sipser showed that calculating the parity of an input c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Circuit Complexity
In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits C_,C_,\ldots (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes. For example, a prominent circuit class P/poly consists of Boolean functions computable by circuits of polynomial size. Proving that \mathsf\not\subseteq \mathsf would separate P and NP (see below). Complexity classes defined in terms of Boolean circuits include AC0, AC, TC0, NC1, NC, and P/poly. Size and depth A Boolean circuit with n input bits is a directed acyclic graph in which every node (usually called ''gates'' in this context) is either an input node of in-degree 0 lab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniformity (complexity)
In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits C_,C_,\ldots (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes. For example, a prominent circuit class P/poly consists of Boolean functions computable by circuits of polynomial size. Proving that \mathsf\not\subseteq \mathsf would separate P and NP (see below). Complexity classes defined in terms of Boolean circuits include AC0, AC, TC0, NC1, NC, and P/poly. Size and depth A Boolean circuit with n input bits is a directed acyclic graph in which every node (usually called ''gates'' in this context) is either an input node of in-degree 0 lab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circuit Complexity
In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits C_,C_,\ldots (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes. For example, a prominent circuit class P/poly consists of Boolean functions computable by circuits of polynomial size. Proving that \mathsf\not\subseteq \mathsf would separate P and NP (see below). Complexity classes defined in terms of Boolean circuits include AC0, AC, TC0, NC1, NC, and P/poly. Size and depth A Boolean circuit with n input bits is a directed acyclic graph in which every node (usually called ''gates'' in this context) is either an input node of in-degree 0 lab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FO (complexity)
Descriptive complexity is a branch of computational complexity theory and of finite model theory that characterizes complexity classes by the type of logic needed to express the languages in them. For example, PH, the union of all complexity classes in the polynomial hierarchy, is precisely the class of languages expressible by statements of second-order logic. This connection between complexity and the logic of finite structures allows results to be transferred easily from one area to the other, facilitating new proof methods and providing additional evidence that the main complexity classes are somehow "natural" and not tied to the specific abstract machines used to define them. Specifically, each logical system produces a set of queries expressible in it. The queries – when restricted to finite structures – correspond to the computational problems of traditional complexity theory. The first main result of descriptive complexity was Fagin's theorem, shown by Ronald Fagi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




AC (complexity)
In circuit complexity, AC is a complexity class hierarchy. Each class, ACi, consists of the languages recognized by Boolean circuits with depth O(\log^i n) and a polynomial number of unlimited fan-in AND and OR gates. The name "AC" was chosen by analogy to NC, with the "A" in the name standing for "alternating" and referring both to the alternation between the AND and OR gates in the circuits and to alternating Turing machines., page 27-18. The smallest AC class is AC0, consisting of constant-depth unlimited fan-in circuits. The total hierarchy of AC classes is defined as \mbox = \bigcup_ \mbox^i Relation to NC The AC classes are related to the NC classes, which are defined similarly, but with gates having only constant fanin. For each ''i'', we have :\mbox^i \subseteq \mbox^i \subseteq \mbox^. As an immediate consequence of this, we have that NC = AC. It is known that inclusion is strict for ''i'' = 0. Variations The power of the AC classes can be affected by addi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LH (complexity)
In computational complexity, the logarithmic time hierarchy (LH) is the complexity class of all computational problems solvable in a logarithmic amount of computation time on an alternating Turing machine with a bounded number of alternations. It is a particular case of a bounded alternating Turing machine hierarchy. It is equal to FO and to FO-uniform AC0. The ith level of the logarithmic time hierarchy is the set of languages recognised by alternating Turing machines in logarithmic time with random access Random access (more precisely and more generally called direct access) is the ability to access an arbitrary element of a sequence in equal time or any datum from a population of addressable elements roughly as easily and efficiently as any othe ... and i-1 alternations, beginning with an existential state. LH is the union of all levels. References Complexity classes {{Comp-sci-theory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fanin
Fan-in is the number of inputs a logic gate can handle. For instance the fan-in for the AND gate shown in the figure is 3. Physical logic gates with a large fan-in tend to be slower than those with a small fan-in. This is because the complexity of the input circuitry increases the input capacitance of the device. Using logic gates with higher fan-in will help in reducing the depth of a logic circuit; this is because circuit design is realized by the target logic family at a digital level, meaning any large fan-in logic gates are simply the smaller fan-in gates chained together in series at a given depth to widen the circuit instead. Fan-in tree of a node refers to a collection of signals that contribute to the input signal of that node. In Quantum logic gate, quantum logic gates the fan-in always has to be equal to the number of outputs, the Fan-out. Gates for which the numbers of inputs and outputs differ would not be Reversible computing, reversible (Unitary operator, unitary) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

BIT Predicate
In mathematics and computer science, the BIT predicate or Ackermann coding, sometimes written BIT(''i'', ''j''), is a predicate that tests whether the ''j''th bit of the number ''i'' is 1, when ''i'' is written in binary. History The BIT predicate was first introduced as the encoding of hereditarily finite sets as natural numbers by Wilhelm Ackermann in his 1937 paper ''The Consistency of General Set Theory''. In this encoding, each natural number encodes a finite set, and each finite set is represented by a natural number. If the encoding of a set X is denoted \eta(X), then this encoding is defined recursively by \eta(\)=2^+2^+2^+\cdots In terms of the binary numeral system, if the number n=\eta(X) encodes a finite set X and the ith binary digit of n is 1, then the set \eta^(i) encoded by i is an element of X. Therefore, the BIT predicate of numbers directly corresponds under this encoding to the membership relation between hereditarily finite sets. The Ackermann coding i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PSPACE
In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space. Formal definition If we denote by SPACE(''t''(''n'')), the set of all problems that can be solved by Turing machines using ''O''(''t''(''n'')) space for some function ''t'' of the input size ''n'', then we can define PSPACE formally asArora & Barak (2009) p.81 :\mathsf = \bigcup_ \mathsf(n^k). PSPACE is a strict superset of the set of context-sensitive languages. It turns out that allowing the Turing machine to be nondeterministic does not add any extra power. Because of Savitch's theorem,Arora & Barak (2009) p.85 NPSPACE is equivalent to PSPACE, essentially because a deterministic Turing machine can simulate a non-deterministic Turing machine without needing much more space (even though it may use much more time).Arora & Barak (2009) p.86 Also, the complements of all problems in PSPACE are also in PSPACE, meaning t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Hierarchy
In computational complexity theory, the polynomial hierarchy (sometimes called the polynomial-time hierarchy) is a hierarchy of complexity classes that generalize the classes NP and co-NP. Each class in the hierarchy is contained within PSPACE. The hierarchy can be defined using oracle machines or alternating Turing machines. It is a resource-bounded counterpart to the arithmetical hierarchy and analytical hierarchy from mathematical logic. The union of the classes in the hierarchy is denoted PH. Classes within the hierarchy have complete problems (with respect to polynomial-time reductions) which ask if quantified Boolean formulae hold, for formulae with restrictions on the quantifier order. It is known that equality between classes on the same level or consecutive levels in the hierarchy would imply a "collapse" of the hierarchy to that level. Definitions There are multiple equivalent definitions of the classes of the polynomial hierarchy. Oracle definition For the oracle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Switching Lemma
In computational complexity theory, Håstad's switching lemma is a key tool for proving lower bounds on the size of constant-depth Boolean circuits. Using the switching lemma, showed that Boolean circuits of depth ''k'' in which only AND, OR, and NOT logic gates are allowed require size : \exp\left(\Omega\left(n^\right)\right) for computing the parity function. The switching lemma says that depth-2 circuits in which some fraction of the variables have been set randomly depend with high probability only on very few variables after the restriction. The name of the switching lemma stems from the following observation: Take an arbitrary formula in conjunctive normal form, which is in particular a depth-2 circuit. Now the switching lemma guarantees that after setting some variables randomly, we end up with a Boolean function that depends only on few variables, i.e., it can be computed by a decision tree of some small depth d. This allows us to write the restricted function as a sma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also publishes Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]