HOME





Axis-parallel
In geometry, an axis-aligned object (axis-parallel, axis-oriented) is an object in ''n''-dimensional space whose shape is aligned with the coordinate axes of the space. Examples are axis-aligned rectangles (or hyperrectangles), the ones with edges parallel to the coordinate axes. Minimum bounding boxes are often implicitly assumed to be axis-aligned. A more general case is rectilinear polygons, the ones with all sides parallel to coordinate axes or rectilinear polyhedra. Many problems in computational geometry allow for faster algorithms when restricted to (collections of) axis-oriented objects, such as axis-aligned rectangles or axis-aligned line segments. A different kind of example are axis-aligned ellipsoids, i.e., the ellipsoid An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional Scaling (geometry), scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface;  that is, a Surface (mathemat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coordinate Axes
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are not interchangeable; they are commonly distinguished by their position in an ordered tuple, or by a label, such as in "the ''x''-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and ''vice versa''; this is the basis of analytic geometry. Common coordinate systems Number line The simplest example of a coordinate system is the identification of points on a line with real numbers using the ''number line''. In this system, an arbitrary point ''O'' (the ''origin'') is chosen on a given line. The coordinate of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axis-aligned Rectangle
A rectilinear polygon is a polygon all of whose sides meet at right angles. Thus the interior angle at each vertex is either 90° or 270°. Rectilinear polygons are a special case of isothetic polygons. In many cases another definition is preferable: a rectilinear polygon is a polygon with sides parallel to the axes of Cartesian coordinates. The distinction becomes crucial when spoken about sets of polygons: the latter definition would imply that sides of all polygons in the set are aligned with the same coordinate axes. Within the framework of the second definition it is natural to speak of horizontal edges and vertical edges of a rectilinear polygon. Rectilinear polygons are also known as orthogonal polygons. Other terms in use are iso-oriented, axis-aligned, and axis-oriented polygons. These adjectives are less confusing when the polygons of this type are rectangles, and the term axis-aligned rectangle is preferred, although orthogonal rectangle and rectilinear rectangl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperrectangle
In geometry, a hyperrectangle (also called a box, hyperbox, k-cell or orthotopeCoxeter, 1973), is the generalization of a rectangle (a plane figure) and the rectangular cuboid (a solid figure) to higher dimensions. A necessary and sufficient condition is that it is Congruence (geometry), congruent to the Cartesian product of finite interval (mathematics), intervals. This means that a k-dimensional rectangular solid has each of its edges equal to one of the closed intervals used in the definition. Every k-cell is compact (mathematics), compact. If all of the edges are equal length, it is a ''hypercube''. A hyperrectangle is a special case of a parallelohedron#Related shapes, parallelotope. Formal definition For every integer i from 1 to k, let a_i and b_i be real numbers such that a_i < b_i. The set of all points x=(x_1,\dots,x_k) in \mathbb^k whose coordinates satisfy the inequalities a_i\leq x_i\leq b_i is a k-cell.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minimum Bounding Box
In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure are used, the minimum box is usually called accordingly, e.g., "minimum-perimeter bounding box". The minimum bounding box of a point set is the same as the minimum bounding box of its convex hull, a fact which may be used heuristically to speed up computation. In the two-dimensional case it is called the ''minimum bounding rectangle''. Axis-aligned minimum bounding box The axis-aligned minimum bounding box (or AABB) for a given point set is its minimum bounding box subject to the constraint that the edges of the box are parallel to the (Cartesian) coordinate axes. It is the Cartesian product of ''N'' intervals each of which is defined by the minimal and maximal value o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectilinear Polygon
A rectilinear polygon is a polygon all of whose sides meet at right angles. Thus the interior angle at each vertex is either 90° or 270°. Rectilinear polygons are a special case of isothetic polygons. In many cases another definition is preferable: a rectilinear polygon is a polygon with sides parallel to the axes of Cartesian coordinates. The distinction becomes crucial when spoken about sets of polygons: the latter definition would imply that sides of all polygons in the set are aligned with the same coordinate axes. Within the framework of the second definition it is natural to speak of horizontal edges and vertical edges of a rectilinear polygon. Rectilinear polygons are also known as orthogonal polygons. Other terms in use are iso-oriented, axis-aligned, and axis-oriented polygons. These adjectives are less confusing when the polygons of this type are rectangles, and the term axis-aligned rectangle is preferred, although orthogonal rectangle and rectilinear rectangl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ellipsoid
An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional Scaling (geometry), scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface;  that is, a Surface (mathematics), surface that may be defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, an ellipsoid is characterized by either of the two following properties. Every planar Cross section (geometry), cross section is either an ellipse, or is empty, or is reduced to a single point (this explains the name, meaning "ellipse-like"). It is Bounded set, bounded, which means that it may be enclosed in a sufficiently large sphere. An ellipsoid has three pairwise perpendicular Rotational symmetry, axes of symmetry which intersect at a Central symmetry, center of symmetry, called the center of the ellipsoid. The line segments that are delimited on the axes of symmetry by the ellipsoid are called the ''principal ax ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]