Axiom Scheme
In mathematical logic, an axiom schema (plural: axiom schemata or axiom schemas) generalizes the notion of axiom. Formal definition An axiom schema is a well-formed formula, formula in the metalanguage of an axiomatic system, in which one or more schematic variables appear. These variables, which are metalinguistic constructs, stand for any First-order logic#Formation rules, term or first-order logic, subformula of the system, which may or may not be required to satisfy certain conditions. Often, such conditions require that certain variables be free variable, free, or that certain variables not appear in the subformula or term. Examples Two well known instances of axiom schemata are the: * mathematical induction, induction schema that is part of Peano's axioms for the arithmetic of the natural numbers; * axiom schema of replacement that is part of the standard ZFC axiomatization of set theory. Czesław Ryll-Nardzewski proved that Peano arithmetic cannot be finitely axiomatized, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Richard Montague
Richard Merritt Montague (September 20, 1930 – March 7, 1971) was an American mathematician and philosopher who made contributions to mathematical logic and the philosophy of language. He is known for proposing Montague grammar to formalize the semantics of natural language. As a student of Alfred Tarski, he also contributed early developments to axiomatic set theory ( ZFC). For the latter half of his life, he was a professor at the University of California, Los Angeles until his early death, believed to be a homicide, at age 40. Career At the University of California, Berkeley, Montague earned a BA in philosophy in 1950, an MA in mathematics in 1953, and a PhD in Philosophy in 1957, the latter under the direction of the mathematician and logician Alfred Tarski. Montague spent his entire career teaching in the UCLA Department of Philosophy, where he supervised the dissertations of Nino Cocchiarella and Hans Kamp. Montague wrote on the foundations of logic and set theory, as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fundamenta Mathematicae
''Fundamenta Mathematicae'' is a peer-reviewed scientific journal of mathematics with a special focus on the foundations of mathematics, concentrating on set theory, mathematical logic, topology and its interactions with algebra, and dynamical systems. The first specialized journal in the field of mathematics, originally it covered only topology, set theory, and foundations of mathematics..... It is published by the Mathematics Institute of the Polish Academy of Sciences. History The journal was conceived by Zygmunt Janiszewski as a means to foster mathematical research in Poland.According to and to the introduction to the 100th volume of the journal (1978, pp=1–2). These two sources cite an article written by Janiszewski himself in 1918 and titled "''On the needs of Mathematics in Poland''". Janiszewski posited that, to achieve its goal, the journal should not compel Polish mathematicians to submit articles written exclusively in Polish, and should be devoted only to a sp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Schema Of Specification
In many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation (''Aussonderungsaxiom''), subset axiom, axiom of class construction, or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set. Some mathematicians call it the axiom schema of comprehension, although others use that term for ''unrestricted'' comprehension, discussed below. Because restricting comprehension avoided Russell's paradox, several mathematicians including Zermelo, Fraenkel, and Gödel considered it the most important axiom of set theory. Statement One instance of the schema is included for each formula \varphi in the language of set theory with free variables among ''x'', ''w''1, ..., ''w''''n'', ''A''. So ''B'' does not occur free in \varphi. In the formal language of set theory, the axiom schema is: :\forall w_1,\ldots,w_n \, \forall A \, \exists B \, \forall ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Schema Of Replacement
In set theory, the axiom schema of replacement is a Axiom schema, schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image (mathematics), image of any Set (mathematics), set under any definable functional predicate, mapping is also a set. It is necessary for the construction of certain infinite sets in ZF. The axiom schema is motivated by the idea that whether a class (set theory), class is a set depends only on the cardinality of the class, not on the rank (set theory), rank of its elements. Thus, if one class is "small enough" to be a set, and there is a surjection from that class to a second class, the axiom states that the second class is also a set. However, because ZFC only speaks of sets, not proper classes, the schema is stated only for definable surjections, which are identified with their defining Well-formed formula, formulas. Statement Suppose P is a definable binary relation (mathematics), relation (which may be a proper class) such that f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Schema Of Predicative Separation
In axiomatic set theory, the axiom schema of predicative separation, or of restricted, or Δ0 separation, is a schema of axioms which is a restriction of the usual axiom schema of separation in Zermelo–Fraenkel set theory. This name Δ0 stems from the Lévy hierarchy, in analogy with the arithmetic hierarchy. Statement The axiom asserts only the existence of a subset of a set if that subset can be defined without reference to the entire universe of sets. The formal statement of this is the same as full separation schema, but with a restriction on the formulas that may be used: For any formula φ, :\forall x \; \exists y \; \forall z \; (z \in y \leftrightarrow z \in x \wedge \varphi(z)) provided that φ contains only bounded quantifiers and, as usual, that the variable ''y'' is not free in it. So all quantifiers in φ, if any, must appear in the forms : \exists u \in v \; \psi(u) : \forall u \in v \; \psi(u) for some sub-formula ψ and, of course, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relation (mathematics)
In mathematics, a relation denotes some kind of ''relationship'' between two mathematical object, objects in a Set (mathematics), set, which may or may not hold. As an example, "''is less than''" is a relation on the set of natural numbers; it holds, for instance, between the values and (denoted as ), and likewise between and (denoted as ), but not between the values and nor between and , that is, and both evaluate to false. As another example, "''is sister of'' is a relation on the set of all people, it holds e.g. between Marie Curie and Bronisława Dłuska, and likewise vice versa. Set members may not be in relation "to a certain degree" – either they are in relation or they are not. Formally, a relation over a set can be seen as a set of ordered pairs of members of . The relation holds between and if is a member of . For example, the relation "''is less than''" on the natural numbers is an infinite set of pairs of natural numbers that contains both and , b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Property
Property is a system of rights that gives people legal control of valuable things, and also refers to the valuable things themselves. Depending on the nature of the property, an owner of property may have the right to consume, alter, share, rent, sell, exchange, transfer, give away, or destroy it, or to exclude others from doing these things, as well as to perhaps abandon it; whereas regardless of the nature of the property, the owner thereof has the right to properly use it under the granted Property rights (economics), property rights. In economics and political economy, there are three broad forms of property: private property, public property, and collective property (or ''cooperative propert''y). Property may be jointly owned by more than one party equally or unequally, or according to simple or complex agreements; to distinguish ownership and easement from rent, there is an expectation that each party's will with regard to the property be clearly defined and unconditional ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Second-order Logic
In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, quantifies over relations. For example, the second-order sentence \forall P\,\forall x (Px \lor \neg Px) says that for every formula ''P'', and every individual ''x'', either ''Px'' is true or not(''Px'') is true (this is the law of excluded middle). Second-order logic also includes quantification over sets, functions, and other variables (see section below). Both first-order and second-order logic use the idea of a domain of discourse (often called simply the "domain" or the "universe"). The domain is a set over which individual elements may be quantified. Examples First-order logic can quantify over individuals, but no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stratification (mathematics)
Stratification has several usages in mathematics. In mathematical logic In mathematical logic, stratification is any consistent assignment of numbers to predicate symbols guaranteeing that a unique formal interpretation of a logical theory exists. Specifically, we say that a set of clauses of the form Q_1 \wedge \dots \wedge Q_n \wedge \neg Q_ \wedge \dots \wedge \neg Q_ \rightarrow P is stratified if and only if there is a stratification assignment S that fulfills the following conditions: # If a predicate P is positively derived from a predicate Q (i.e., P is the head of a rule, and Q occurs positively in the body of the same rule), then the stratification number of P must be greater than or equal to the stratification number of Q, in short S(P) \geq S(Q). # If a predicate P is derived from a negated predicate Q (i.e., P is the head of a rule, and Q occurs negatively in the body of the same rule), then the stratification number of P must be greater than the stratification numb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
New Foundations
In mathematical logic, New Foundations (NF) is a non-well-founded, finitely axiomatizable set theory conceived by Willard Van Orman Quine as a simplification of the theory of types of ''Principia Mathematica''. Definition The well-formed formulas of NF are the standard formulas of propositional calculus with two primitive predicates equality (=) and membership (\in). NF can be presented with only two axiom schemata: * Extensionality: Two objects with the same elements are the same object; formally, given any set ''A'' and any set ''B'', if for every set ''X'', ''X'' is a member of ''A'' if and only if ''X'' is a member of ''B'', then ''A'' is equal to ''B''. * A restricted axiom schema of comprehension: \ exists for each stratified formula \phi. A formula \phi is said to be ''stratified'' if there exists a function ''f'' from pieces of \phi's syntax to the natural numbers, such that for any atomic subformula x \in y of \phi we have ''f''(''y'') = ''f''(''x'') + 1, whil ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Von Neumann–Bernays–Gödel Set Theory
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not. A key theorem of NBG is the class existence theorem, which states that for every formula whose quantifiers range only over sets, there is a class consisting of the sets satisfying the formula. This class is built by mirroring the step-by-step construction of the formula with classes. Since all set-theoretic formulas are constructed from two kinds of atomic formulas (membership and equality ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |