Artin Reciprocity Law
The Artin reciprocity law, which was established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of global class field theory In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is credit .... The term "reciprocity law (mathematics), reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Gotthold Eisenstein, Eisenstein and Ernst Kummer, Kummer to David Hilbert, Hilbert's product formula for the Hilbert symbol, norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem. Statement Let L/K be a Galois extension of global fields and C_L stand for the Adelic algebraic group, idèle class group ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Emil Artin
Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrians, Austrian mathematician of Armenians, Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. He also contributed to the pure theories of rings, groups and fields. Along with Emmy Noether, he is considered the founder of modern abstract algebra. Early life and education Parents Emil Artin was born in Vienna to parents Emma Maria, née Laura (stage name Clarus), a soubrette on the operetta stages of Austria and Germany, and Emil Hadochadus Maria Artin, Austrian-born of mixed Austrians, Austrian and Armenian people, Armenian descent. His Armenian last name was Artinian which was shortened to Artin. Several documents, including Emil's birth certificate, list the father's occupation as "opera singer" though others list it as "art dealer." It see ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Norm Residue Symbol
In number theory, a symbol is any of many different generalizations of the Legendre symbol. This article describes the relations between these various generalizations. The symbols below are arranged roughly in order of the date they were introduced, which is usually (but not always) in order of increasing generality. * Legendre symbol \left(\frac\right) defined for ''p'' a prime, ''a'' an integer, and takes values 0, 1, or −1. * Jacobi symbol \left(\frac\right) defined for ''b'' a positive odd integer, ''a'' an integer, and takes values 0, 1, or −1. An extension of the Legendre symbol to more general values of ''b''. * Kronecker symbol \left(\frac\right) defined for ''b'' any integer, ''a'' an integer, and takes values 0, 1, or −1. An extension of the Jacobi and Legendre symbols to more general values of ''b''. * Power residue symbol \left(\frac\right)=\left(\frac\right)_m is defined for ''a'' in some global field containing the ''m''th roots of 1 ( for some ''m''), ''b'' a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Meromorphic
In the mathematical field of complex analysis, a meromorphic function on an open set, open subset ''D'' of the complex plane is a function (mathematics), function that is holomorphic function, holomorphic on all of ''D'' ''except'' for a set of isolated points, which are pole (complex analysis), ''poles'' of the function. The term comes from the Greek language, Greek ''meros'' (wikt:μέρος, μέρος), meaning "part". Every meromorphic function on ''D'' can be expressed as the ratio between two holomorphic functions (with the denominator not constant 0) defined on ''D'': any pole must coincide with a zero of the denominator. Heuristic description Intuitively, a meromorphic function is a ratio of two well-behaved (holomorphic) functions. Such a function will still be well-behaved, except possibly at the points where the denominator of the fraction is zero. If the denominator has a zero at ''z'' and the numerator does not, then the value of the function will approach infinity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Artin L-function
In mathematics, an Artin ''L''-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group ''G''. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin ''L''-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis. Definition Given \rho , a representation of G on a finite-dimensional complex vector space V, where G is the Galois group of the finite extension L/K of number fields, the Artin L-function L(\rho,s) is defined by an Euler product. For each prime ideal \mathfrak p in K's ring of integers, there is an Euler fac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Artin Reciprocity Law
The Artin reciprocity law, which was established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of global class field theory In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is credit .... The term "reciprocity law (mathematics), reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Gotthold Eisenstein, Eisenstein and Ernst Kummer, Kummer to David Hilbert, Hilbert's product formula for the Hilbert symbol, norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem. Statement Let L/K be a Galois extension of global fields and C_L stand for the Adelic algebraic group, idèle class group ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Place (mathematics)
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two integers ''x'' and ''y'' such that their sum, and the sum of their squares, equal two ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Extension
In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian group, abelian. When the Galois group is also cyclic group, cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable group, solvable, i.e., if the group can be decomposed into a series of normal Group extension, extensions of an abelian group. Every finite extension of a finite field is a cyclic extension. Description Class field theory provides detailed information about the abelian extensions of number fields, function field of an algebraic variety, function fields of algebraic curves over finite fields, and local fields. There are two slightly different definitions of the term cyclotomic extension. It can mean either an extension formed by adjoining roots of unity to a field, or a subextension of such an extension. The cyclotomic fields are examples. A cyclotomic extension, under either d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Takagi Existence Theorem
{{short description, Correspondence between finite abelian extensions and generalized ideal class groups In class field theory, the Takagi existence theorem states that for any number field ''K'' there is a one-to-one inclusion reversing correspondence between the finite abelian extensions of ''K'' (in a fixed algebraic closure of ''K'') and the generalized ideal class groups defined via a modulus of ''K''. It is called an existence theorem because a main burden of the proof is to show the existence of enough abelian extensions of ''K''. Formulation Here a modulus (or ''ray divisor'') is a formal finite product of the valuations (also called primes or places) of ''K'' with positive integer exponents. The archimedean valuations that might appear in a modulus include only those whose completions are the real numbers (not the complex numbers); they may be identified with orderings on ''K'' and occur only to exponent one. The modulus ''m'' is a product of a non-archimedean (finite) p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frobenius Element
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class that includes finite fields. The endomorphism maps every element to its -th power. In certain contexts it is an automorphism, but this is not true in general. Definition Let be a commutative ring with prime characteristic (an integral domain of positive characteristic always has prime characteristic, for example). The Frobenius endomorphism ''F'' is defined by :F(r) = r^p for all ''r'' in ''R''. It respects the multiplication of ''R'': :F(rs) = (rs)^p = r^ps^p = F(r)F(s), and is 1 as well. Moreover, it also respects the addition of . The expression can be expanded using the binomial theorem. Because is prime, it divides but not any for ; it therefore will divide the numerator, but not the denominator, of the explicit formula of the binomial coefficients :\frac, if . Ther ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hasse Principle
In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each different prime number. This is handled by examining the equation in the completions of the rational numbers: the real numbers and the ''p''-adic numbers. A more formal version of the Hasse principle states that certain types of equations have a rational solution if and only if they have a solution in the real numbers ''and'' in the ''p''-adic numbers for each prime ''p''. Intuition Given a polynomial equation with rational coefficients, if it has a rational solution, then this also yields a real solution and a ''p''-adic solution, as the rationals embed in the reals and ''p''-adics: a global solution yields local solutions at each prime. The Hasse principle asks when the reverse can be done, or rather, asks what the obstruction is: when ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutator Subgroup
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, G/N is abelian if and only if N contains the commutator subgroup of G. So in some sense it provides a measure of how far the group is from being abelian; the larger the commutator subgroup is, the "less abelian" the group is. Commutators For elements g and h of a group ''G'', the commutator of g and h is ,h= g^h^gh. The commutator ,h/math> is equal to the identity element ''e'' if and only if gh = hg , that is, if and only if g and h commute. In general, gh = hg ,h/math>. However, the notation is somewhat arbitrary and there is a non-equivalent variant definition for the commutator that has the inverses on the right hand side o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tate Cohomology Group
In mathematics, Tate cohomology groups are a slightly modified form of the usual cohomology groups of a finite group that combine homology and cohomology groups into one sequence. They were introduced by , and are used in class field theory. Definition If ''G'' is a finite group and ''A'' a ''G''-module, then there is a natural map ''N'' from H_0(G,A) to H^0(G,A) taking a representative ''a'' to \sum_ ga (the sum over all ''G''-conjugates of ''a''). The Tate cohomology groups \hat H^n(G,A) are defined by *\hat H^n(G,A) = H^n(G,A) for n\ge 1, *\hat H^0(G,A)=\operatorname N= quotient of H^0(G,A) by norms of elements of ''A'', *\hat H^(G,A)=\ker N= quotient of norm 0 elements of ''A'' by principal elements of ''A'', *\hat H^(G,A) = H_(G,A) for n\le -2. Properties * If :: 0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0 :is a short exact sequence of ''G''-modules, then we get the usual long exact sequence of Tate cohomology groups: ::\cdots \longrightarrow ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |