In the mathematical field of
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebra ...
, a meromorphic function on an
open subset
In mathematics, open sets are a generalization of open intervals in the real line.
In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are s ...
''D'' of the
complex plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by th ...
is a
function that is
holomorphic
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex de ...
on all of ''D'' ''except'' for a set of
isolated point
]
In mathematics, a point ''x'' is called an isolated point of a subset ''S'' (in a topological space ''X'') if ''x'' is an element of ''S'' and there exists a neighborhood of ''x'' which does not contain any other points of ''S''. This is equi ...
s, which are
pole (complex analysis), poles of the function.
[ ] The term comes from the
Greek
Greek may refer to:
Greece
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group.
*Greek language, a branch of the Indo-European language family.
**Proto-Greek language, the assumed last common ancestor ...
''meros'' (
μÎÏος), meaning "part".
Every meromorphic function on ''D'' can be expressed as the ratio between two
holomorphic function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex de ...
s (with the denominator not constant 0) defined on ''D'': any pole must coincide with a zero of the denominator.
Heuristic description
Intuitively, a meromorphic function is a ratio of two well-behaved (holomorphic) functions. Such a function will still be well-behaved, except possibly at the points where the denominator of the fraction is zero. If the denominator has a zero at ''z'' and the numerator does not, then the value of the function will approach infinity; if both parts have a zero at ''z'', then one must compare the
multiplicity of these zeros.
From an algebraic point of view, if the function's domain is
connected, then the set of meromorphic functions is the
field of fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
of the
integral domain
In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
of the set of holomorphic functions. This is analogous to the relationship between the
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s and the
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s.
Prior, alternate use
Both the field of study wherein the term is used and the precise meaning of the term changed in the 20th century. In the 1930s, in
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
, a ''meromorphic function'' (or ''meromorph'') was a function from a group ''G'' into itself that preserved the product on the group. The image of this function was called an ''automorphism'' of ''G''.
Similarly, a ''homomorphic function'' (or ''homomorph'') was a function between groups that preserved the product, while a ''homomorphism'' was the image of a homomorph. This form of the term is now obsolete, and the related term ''meromorph'' is no longer used in group theory.
The term ''
endomorphism
In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a ...
'' is now used for the function itself, with no special name given to the image of the function.
A meromorphic function is not necessarily an endomorphism, since the complex points at its poles are not in its domain, but may be in its range.
Properties
Since the poles of a meromorphic function are isolated, there are at most
countably
In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
many.
[ The set of poles can be infinite, as exemplified by the function
By using ]analytic continuation
In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a n ...
to eliminate removable singularities, meromorphic functions can be added, subtracted, multiplied, and the quotient can be formed unless on a connected component of ''D''. Thus, if ''D'' is connected, the meromorphic functions form a field, in fact a field extension
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ...
of the complex numbers
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
.
Higher dimensions
In several complex variables
The theory of functions of several complex variables is the branch of mathematics dealing with complex number, complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several ...
, a meromorphic function is defined to be locally a quotient of two holomorphic functions. For example, is a meromorphic function on the two-dimensional complex affine space. Here it is no longer true that every meromorphic function can be regarded as a holomorphic function with values in the Riemann sphere
In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex number ...
: There is a set of "indeterminacy" of codimension
In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties.
For affine and projective algebraic varieties, the codimension equal ...
two (in the given example this set consists of the origin ).
Unlike in dimension one, in higher dimensions there do exist compact complex manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic.
The term complex manifold is variously used to mean a ...
s on which there are no non-constant meromorphic functions, for example, most complex tori.
Examples
* All rational function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ...
s, for example are meromorphic on the whole complex plane.
* The functions as well as the gamma function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except th ...
and the Riemann zeta function are meromorphic on the whole complex plane.[
* The function is defined in the whole complex plane except for the origin, 0. However, 0 is not a pole of this function, rather an ]essential singularity
In complex analysis, an essential singularity of a function is a "severe" singularity near which the function exhibits odd behavior.
The category ''essential singularity'' is a "left-over" or default group of isolated singularities that a ...
. Thus, this function is not meromorphic in the whole complex plane. However, it is meromorphic (even holomorphic) on .
* The complex logarithm
In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related:
* A complex logarithm of a nonzero complex number z, defined to b ...
function is not meromorphic on the whole complex plane, as it cannot be defined on the whole complex plane while only excluding a set of isolated points.[
* The function is not meromorphic in the whole plane, since the point is an ]accumulation point
In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also conta ...
of poles and is thus not an isolated singularity.[
* The function is not meromorphic either, as it has an essential singularity at 0.
]
On Riemann surfaces
On a Riemann surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed ve ...
, every point admits an open neighborhood
which is biholomorphic to an open subset of the complex plane. Thereby the notion of a meromorphic function can be defined for every Riemann surface.
When ''D'' is the entire Riemann sphere
In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex number ...
, the field of meromorphic functions is simply the field of rational functions in one variable over the complex field, since one can prove that any meromorphic function on the sphere is rational. (This is a special case of the so-called GAGA
Gaga ( he, ×’×¢ ×’×¢ literally 'touch touch') (also: ga-ga, gaga ball, or ga-ga ball) is a variant of dodgeball that is played in a gaga "pit". The game combines dodging, striking, running, and jumping, with the objective of being the last perso ...
principle.)
For every Riemann surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed ve ...
, a meromorphic function is the same as a holomorphic function that maps to the Riemann sphere and which is not the constant function equal to ∞. The poles correspond to those complex numbers which are mapped to ∞.
On a non-compact Riemann surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed ve ...
, every meromorphic function can be realized as a quotient of two (globally defined) holomorphic functions. In contrast, on a compact Riemann surface, every holomorphic function is constant, while there always exist non-constant meromorphic functions.
See also
*Cousin problems
In mathematics, the Cousin problems are two questions in several complex variables, concerning the existence of meromorphic functions that are specified in terms of local data. They were introduced in special cases by Pierre Cousin in 1895. They ...
* Mittag-Leffler's theorem
* Weierstrass factorization theorem
Footnotes
References
{{DEFAULTSORT:Meromorphic Function