HOME
*





3D Pose Estimation
3D pose estimation is a process of predicting the transformation of an object from a user-defined reference pose, given an image or a 3D scan. It arises in computer vision or robotics where the pose or transformation of an object can be used for alignment of a computer-aided design models, identification, grasping, or manipulation of the object. The image data from which the pose of an object is determined can be either a single image, a stereo image pair, or an image sequence where, typically, the camera is moving with a known velocity. The objects which are considered can be rather general, including a living being or body parts, e.g., a head or hands. The methods which are used for determining the pose of an object, however, are usually specific for a class of objects and cannot generally be expected to work well for other types of objects. From an uncalibrated 2D camera It is possible to estimate the 3D rotation and translation of a 3D object from a single 2D photo, if an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

C (programming Language)
C (''pronounced like the letter c'') is a general-purpose computer programming language. It was created in the 1970s by Dennis Ritchie, and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems, device drivers, protocol stacks, though decreasingly for application software. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems. A successor to the programming language B, C was originally developed at Bell Labs by Ritchie between 1972 and 1973 to construct utilities running on Unix. It was applied to re-implementing the kernel of the Unix operating system. During the 1980s, C gradually gained popularity. It has become one of the most widely used programming languages, with C compilers available for practically all modern computer architectures and operating systems. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Vision
Computer vision is an interdisciplinary scientific field that deals with how computers can gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to understand and automate tasks that the human visual system can do. Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the forms of decisions. Understanding in this context means the transformation of visual images (the input of the retina) into descriptions of the world that make sense to thought processes and can elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory. The scientific discipline of computer vision is concerned with the theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pose Estimation
3D pose estimation is a process of predicting the transformation of an object from a user-defined reference pose, given an image or a 3D scan. It arises in computer vision or robotics where the pose or transformation of an object can be used for alignment of a computer-aided design models, identification, grasping, or manipulation of the object. The image data from which the pose of an object is determined can be either a single image, a stereo image pair, or an image sequence where, typically, the camera is moving with a known velocity. The objects which are considered can be rather general, including a living being or body parts, e.g., a head or hands. The methods which are used for determining the pose of an object, however, are usually specific for a class of objects and cannot generally be expected to work well for other types of objects. From an uncalibrated 2D camera It is possible to estimate the 3D rotation and translation of a 3D object from a single 2D photo, if an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trifocal Tensor
In computer vision, the trifocal tensor (also tritensor) is a 3×3×3 array of numbers (i.e., a tensor) that incorporates all projective geometric relationships among three views. It relates the coordinates of corresponding points or lines in three views, being independent of the scene structure and depending only on the relative motion (i.e., pose) among the three views and their intrinsic calibration parameters. Hence, the trifocal tensor can be considered as the generalization of the fundamental matrix in three views. It is noted that despite the tensor being made up of 27 elements, only 18 of them are actually independent. There is also a so-called calibrated trifocal tensor, which relates the coordinates of points and lines in three views given their intrinsic parameters and encodes the relative pose of the cameras up to global scale, totalling 11 independent elements or degrees of freedom. The reduced degrees of freedom allow for fewer correspondences to fit the model, at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homography (computer Vision)
In the field of computer vision, any two images of the same planar surface in space are related by a homography (assuming a pinhole camera model). This has many practical applications, such as image rectification, image registration, or camera motion—rotation and translation—between two images. Once camera resectioning has been done from an estimated homography matrix, this information may be used for navigation, or to insert models of 3D objects into an image or video, so that they are rendered with the correct perspective and appear to have been part of the original scene (see Augmented reality). 3D plane to plane equation We have two cameras ''a'' and ''b'', looking at points P_i in a plane. Passing from the projection ^bp_i=\left(^bu_i;^bv_i;1\right) of P_i in ''b'' to the projection ^ap_i=\left(^au_i;^av_i;1\right) of P_i in ''a'': : ^ap_i = \fracK_a \cdot H_ \cdot K_b^ \cdot ^bp_i where ^az_i and ^bz_i are the z coordinates of P in each camera frame and where t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Camera Resectioning
Camera resectioning is the process of estimating the parameters of a pinhole camera model approximating the camera that produced a given photograph or video; it determines which incoming light ray is associated with each pixel on the resulting image. Basically, the process determines the pose of the pinhole camera. Usually, the camera parameters are represented in a 3 × 4 projection matrix called the ''camera matrix''. The extrinsic parameters define the camera '' pose'' (position and orientation) while the intrinsic parameters specify the camera image format (focal length, pixel size, and image origin). This process is often called geometric camera calibration or simply camera calibration, although that term may also refer to photometric camera calibration or be restricted for the estimation of the intrinsic parameters only. Exterior orientation and interior orientation refer to the determination of only the extrinsic and intrinsic parameters, respectively. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Articulated Body Pose Estimation
Articulated body pose estimation in computer vision is the study of algorithms and systems that recover the pose of an articulated body, which consists of joints and rigid parts using image-based observations. It is one of the longest-lasting problems in computer vision because of the complexity of the models that relate observation with pose, and because of the variety of situations in which it would be useful. Description Perception of human beings in their neighboring environment is an important capability that robots must possess. If a person uses gestures to point to a particular object, then the interacting machine should be able to understand the situation in real world context. Thus pose estimation is an important and challenging problem in computer vision, and many algorithms have been deployed in solving this problem over the last two decades. Many solutions involve training complex models with large data sets. Pose estimation is a difficult problem and an active subj ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


3D Object Recognition
{{FeatureDetectionCompVisNavbox In computer vision, 3D object recognition involves recognizing and determining 3D information, such as the pose, volume, or shape, of user-chosen 3D objects in a photograph or range scan. Typically, an example of the object to be recognized is presented to a vision system in a controlled environment, and then for an arbitrary input such as a video stream, the system locates the previously presented object. This can be done either off-line, or in real-time. The algorithms for solving this problem are specialized for locating a single pre-identified object, and can be contrasted with algorithms which operate on general classes of objects, such as face recognition systems or 3D generic object recognition. Due to the low cost and ease of acquiring photographs, a significant amount of research has been devoted to 3D object recognition in photographs. 3D single-object recognition in photographs The method of recognizing a 3D object depends on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gesture Recognition
Gesture recognition is a topic in computer science and language technology with the goal of interpreting human gestures via mathematical algorithms. It is a subdiscipline of computer vision. Gestures can originate from any bodily motion or state, but commonly originate from the face or hand. Focuses in the field include emotion recognition from face and hand gesture recognition, since they are all expressions. Users can make simple gestures to control or interact with devices without physically touching them. Many approaches have been made using cameras and computer vision algorithms to interpret sign language, however, the identification and recognition of posture, gait, proxemics, and human behaviors is also the subject of gesture recognition techniques. Gesture recognition can be seen as a way for computers to begin to understand human body language, thus building a better bridge between machines and humans than older text user interfaces or even GUIs (graphical user in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Scale-invariant Feature Transform
The scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local ''features'' in images, invented by David Lowe in 1999. Applications include object recognition, robotic mapping and navigation, image stitching, 3D modeling, gesture recognition, video tracking, individual identification of wildlife and match moving. SIFT keypoints of objects are first extracted from a set of reference images and stored in a database. An object is recognized in a new image by individually comparing each feature from the new image to this database and finding candidate matching features based on Euclidean distance of their feature vectors. From the full set of matches, subsets of keypoints that agree on the object and its location, scale, and orientation in the new image are identified to filter out good matches. The determination of consistent clusters is performed rapidly by using an efficient hash table implementation of the generalised Hough trans ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]