16525 Shumarinaiko
16525 Shumarinaiko, provisional designation , is a stony Nysian asteroid and synchronous binary system from the inner regions of the asteroid belt, approximately 5 kilometers in diameter. It was discovered on 14 February 1991, by Japanese astronomers Kin Endate and Kazuro Watanabe at the Kitami Observatory on the island of Hokkaidō in northern Japan. The asteroid was named after the Japanese Lake Shumarinai. Its sub-kilometer sized minor-planet moon was discovered in 2013. Orbit and classification ''Shumarinaiko'' is a member of the Nysa family (), the largest asteroid family of the main belt, consisting of stony and carbonaceous subfamilies. The family, named after 44 Nysa, is located in the inner belt near the Kirkwood gap (3:1 orbital resonance with Jupiter), a depleted zone that separates the central main belt. It orbits the Sun in the inner asteroid belt at a distance of 2.1–2.7 AU once every 3 years and 9 months (1,358 days). Its orbit has an eccentrici ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kin Endate
is a Japanese amateur astronomer who has discovered hundreds of asteroids, most of them in collaboration with Kazuro Watanabe, placing him among the most prolific discoverers of minor planets. Career in astronomy Kin Endate was born in Iwaizumi in Iwate Prefecture and went to Hokkaido Designers School to study photography. He began taking astrophotos in high school, but did not begin serious asteroid observations until 1986. His notable discoveries include the minor planets (5648) 1990 VU1 and 6500 Kodaira, a Jupiter trojan and the Mars-crosser, respectively. He also recorded the first known precovery images of Comet Shoemaker-Levy 9 with his private diameter telescope on March 15, 1993, ten days before the official discovery of the comet. Kin, who was looking specifically for asteroids, did not know of the comet in his images until after the official discovery. [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asteroid Belt
The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, called asteroids or minor planets. This asteroid belt is also called the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System such as near-Earth asteroids and trojan asteroids. The asteroid belt is the smallest and innermost known circumstellar disc in the Solar System. About 60% of its mass is contained in the four largest asteroids: Ceres, Vesta, Pallas, and Hygiea. The total mass of the asteroid belt is calculated to be 3% that of the Moon. Ceres, the only object in the asteroid belt large enough to be a dwarf planet, is about 950 km in diameter, whereas Vesta, Pallas, and Hygiea have mean diameters less than 600 km. The remaining bodies range down to the size of a dust particl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brian D
Brian (sometimes spelled Bryan in English) is a male given name of Irish and Breton origin, as well as a surname of Occitan origin. It is common in the English-speaking world. It is possible that the name is derived from an Old Celtic word meaning "high" or "noble". For example, the element ''bre'' means "hill"; which could be transferred to mean "eminence" or "exalted one". The name is quite popular in Ireland, on account of Brian Boru, a 10th-century High King of Ireland. The name was also quite popular in East Anglia during the Middle Ages. This is because the name was introduced to England by Bretons following the Norman Conquest. Bretons also settled in Ireland along with the Normans in the 12th century, and 'their' name was mingled with the 'Irish' version. Also, in the north-west of England, the 'Irish' name was introduced by Scandinavian settlers from Ireland. Within the Gaelic speaking areas of Scotland, the name was at first only used by professional families of Ir ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lightcurve
In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event or binary as observed during occultation events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Variable stars Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Palomar Observatory
Palomar Observatory is an astronomical research observatory in San Diego County, California, United States, in the Palomar Mountain Range. It is owned and operated by the California Institute of Technology (Caltech). Research time at the observatory is granted to Caltech and its research partners, which include the Jet Propulsion Laboratory (JPL), Yale University, and the National Optical Observatories of China. The observatory operates several telescopes, including the Hale Telescope, the Samuel Oschin Telescope (dedicated to the Zwicky Transient Facility, ZTF), the Palomar Telescope, and the Gattini-IR telescope. Decommissioned instruments include the Palomar Testbed Interferometer and the first telescopes at the observatory, an Schmidt camera from 1936. History Hale's vision for large telescopes and Palomar Observatory Astronomer George Ellery Hale, whose vision created the Palomar Observatory, built the world's largest telescope four times in succession. He publi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Digitized Sky Survey
The Digitized Sky Survey (DSS) is a digitized version of several photographic astronomical surveys of the night sky, produced by the Space Telescope Science Institute between 1983 and 2006. Versions and source material The term Digitized Sky Survey originally referred to the publication in 1994 of a digital version of an all-sky photographic atlas used to produce the first version of the Guide Star Catalog. For the northern sky, the National Geographic Society – Palomar Observatory Sky Survey E-band (red, named after the Eastman Kodak IIIa-E emulsion used), provided almost all of the source data (plate code "XE" in the survey). For the southern sky, the J-band (blue, Eastman Kodak IIIa-J) of the ESO/ SERC Southern Sky Atlas (known as the SERC-J, code "S") and the "quick" V-band (blue or V in the Johnson–Kron–Cousins system, Eastman Kodak IIa-D) SERC-J Equatorial Extension (SERC-QV, code "XV"), from the UK Schmidt Telescope at the Australian Siding Spring Observa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Precovery
In astronomy, precovery (short for pre-discovery recovery) is the process of finding the image of an object in images or photographic plates predating its discovery, typically for the purpose of calculating a more accurate orbit. This happens most often with minor planets, but sometimes a comet, a dwarf planet, a natural satellite, or a star is found in old archived images; even exoplanet precovery observations have been obtained. "Precovery" refers to a pre-discovery image; "recovery" refers to imaging of a body which was lost to our view (as behind the Sun), but is now visible again ''(also see lost minor planet and lost comet)''. Orbit determination requires measuring an object's position on multiple occasions. The longer the interval between observations, the more accurately the orbit can be calculated; however, for a newly discovered object, only a few days' or weeks' worth of measured positions may be available, sufficient only for a preliminary (imprecise) orbit calcul ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Observation Arc
In observational astronomy, the observation arc (or arc length) of a Solar System body is the time period between its earliest and latest observations, used for tracing the body's path. It is usually given in days or years. The term is mostly used in the discovery and tracking of asteroids and comets. Arc length has the greatest influence on the accuracy of an orbit. The number and spacing of intermediate observations has a lesser effect. Short arcs A very short arc leaves a high uncertainty parameter. The object might be in one of many different orbits, at many distances from Earth. In some cases, the initial arc was too short to determine if the object was in orbit around the Earth, or orbiting out in the asteroid belt. With a 1-day observation arc, was thought to be a trans-Neptunian dwarf planet, but is now known to be a 1 km main-belt asteroid. With an observation arc of 3 days, was thought to be a Mars-crossing asteroid that could be a threat to Earth, but was ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ecliptic
The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system. Sun's apparent motion The ecliptic is the apparent path of the Sun throughout the course of a year. Because Earth takes one year to orbit the Sun, the apparent position of the Sun takes one year to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward every day. This small difference in the Sun's position against the stars causes any particular spot on Earth's surface to catch up with (and stand directly north or south of) the Sun about four minutes later each day than it would if Earth did not orbit; a day on Earth is therefore 24 ho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orbital Inclination
Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°. Orbits The inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the orbital plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planet's equator. For ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orbital Eccentricity
In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the Galaxy. Definition In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape. The eccentricity may take the following values: * circular orbit: ''e'' = 0 * elliptic orbit: 0 < ''e'' < 1 * [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
44 Nysa
Nysa (minor planet designation: 44 Nysa) is a large and very bright main-belt asteroid, and the brightest member of the Nysian asteroid family. It is classified as a rare class E asteroid and is probably the largest of this type (though 55 Pandora is only slightly smaller). Discovery It was discovered by Hermann Goldschmidt on May 27, 1857, and named after the mythical land of Nysa in Greek mythology. Physical properties In 2002 Kaasalainen ''et al.'' used 63 lightcurves from the Uppsala Asteroid Photometric Catalog (UAPC) to construct a shape model of 44 Nysa. The shape model is conical, which they interpreted as indicating the asteroid may actually be a contact binary. In 2003, Tanga ''et al.'' published results obtained from the Fine Guidance Sensor on the Hubble Space Telescope in which high-precision interferometry was performed on Nysa with the goal of a more accurate shape determination. Due to Hubble's orbit around the Earth, hours-long photometry sessions, as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |