Zorn Ring
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a Zorn ring is an alternative ring in which for every non-
nilpotent In mathematics, an element x of a ring (mathematics), ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister Idempotent (ring theory), idem ...
''x'' there exists an element ''y'' such that ''xy'' is a non-zero
idempotent Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
. named them after
Max August Zorn Max August Zorn (; June 6, 1906 – March 9, 1993) was a German mathematician. He was an algebraist, group theorist, and numerical analyst. He is best known for Zorn's lemma, a method used in set theory that is applicable to a wide range of m ...
, who studied a similar condition in . For associative rings, the definition of Zorn ring can be restated as follows: the
Jacobson radical In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R- modules. It happens that substituting "left" in place of "right" in the definitio ...
J(''R'') is a
nil ideal In mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if all of its elements is nilpotent, i.e for each a \in I exists natural number ''n'' for which a^n = 0. If all elements of a ring ...
and every right ideal of ''R'' which is not contained in J(''R'') contains a nonzero idempotent. Replacing "right ideal" with "left ideal" yields an equivalent definition. Left or right
Artinian ring In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are ...
s, left or right
perfect ring In the area of abstract algebra known as ring theory, a left perfect ring is a type of ring over which all left modules have projective covers. The right case is defined by analogy, and the condition is not left-right symmetric; that is, ther ...
s, semiprimary rings and
von Neumann regular ring In mathematics, a von Neumann regular ring is a ring ''R'' (associative, with 1, not necessarily commutative) such that for every element ''a'' in ''R'' there exists an ''x'' in ''R'' with . One may think of ''x'' as a "weak inverse" of the eleme ...
s are all examples of associative Zorn rings.


References

* * * * Non-associative algebras Ring theory {{abstract-algebra-stub