Zeta Function (operator)
   HOME

TheInfoList



OR:

The
zeta function In mathematics, a zeta function is (usually) a function analogous to the original example, the Riemann zeta function : \zeta(s) = \sum_^\infty \frac 1 . Zeta functions include: * Airy zeta function, related to the zeros of the Airy function * A ...
of a mathematical
operator Operator may refer to: Mathematics * A symbol indicating a mathematical operation * Logical operator or logical connective in mathematical logic * Operator (mathematics), mapping that acts on elements of a space to produce elements of another sp ...
\mathcal O is a function defined as : \zeta_(s) = \operatorname \; \mathcal O^ for those values of ''s'' where this expression exists, and as an
analytic continuation In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a ne ...
of this function for other values of ''s''. Here "tr" denotes a functional
trace Trace may refer to: Arts and entertainment Music * ''Trace'' (Son Volt album), 1995 * ''Trace'' (Died Pretty album), 1993 * Trace (band), a Dutch progressive rock band * ''The Trace'' (album), by Nell Other uses in arts and entertainment * ...
. The zeta function may also be expressible as a spectral zeta function in terms of the
eigenvalues In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
\lambda_i of the operator \mathcal O by : \zeta_(s) = \sum_ \lambda_i^ . It is used in giving a rigorous definition to the
functional determinant In functional analysis, a branch of mathematics, it is sometimes possible to generalize the notion of the determinant of a square matrix of finite order (representing a linear transformation from a finite-dimensional vector space to itself) to the ...
of an operator, which is given by : \det \mathcal O := e^ \;. The
Minakshisundaram–Pleijel zeta function The Minakshisundaram–Pleijel zeta function is a zeta function encoding the eigenvalues of the Laplacian of a compact Riemannian manifold. It was introduced by . The case of a compact region of the plane was treated earlier by . Definition For ...
is an example, when the operator is the
Laplacian In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
of a compact
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
. One of the most important motivations for
Arakelov theory In mathematics, Arakelov theory (or Arakelov geometry) is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions. Background The main motivation behind Arakelov geometry is tha ...
is the zeta functions for operators with the method of
heat kernel In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum ...
s generalized algebro-geometrically.


See also

*
Quillen metric In mathematics, and especially differential geometry, the Quillen metric is a metric on the determinant line bundle of a family of operators. It was introduced by Daniel Quillen for certain elliptic operators over a Riemann surface, and generalized ...


References

* * {{mathanalysis-stub Functional analysis Zeta and L-functions