Yttrium-86
   HOME

TheInfoList



OR:

Natural
yttrium Yttrium is a chemical element; it has Symbol (chemistry), symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost a ...
(39Y) is composed of a single
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
, yttrium-89. The most stable
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
s are 88Y, which has a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 106.6 days, and 91Y, with a half-life of 58.51 days. All the other isotopes have half-lives of less than a day, except 87Y, which has a half-life of 79.8 hours, and 90Y, with 64 hours. The dominant
decay mode Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
below the stable 89Y is
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
and the dominant mode after it is
beta emission In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron t ...
. Thirty-five unstable isotopes have been characterized. 90Y exists in equilibrium with its
parent isotope In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
strontium-90 Strontium-90 () is a radioactive isotope of strontium produced by nuclear fission, with a half-life of 28.79 years. It undergoes β− decay into yttrium-90, with a decay energy of 0.546 MeV. Strontium-90 has applications in medicine a ...
, which is a product of
nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactiv ...
.


List of isotopes

, -id=Yttrium-76 , rowspan=3, 76Y , rowspan=3 style="text-align:right" , 39 , rowspan=3 style="text-align:right" , 37 , rowspan=3, 75.95894(32)# , rowspan=3, 28(9) ms , β+? , 76Sr , rowspan=3, 1−# , rowspan=3, , - , p? , 75Sr , - , β+, p? , 75Rb , -id=Yttrium-77 , rowspan=3, 77Y , rowspan=3 style="text-align:right" , 39 , rowspan=3 style="text-align:right" , 38 , rowspan=3, 76.95015(22)# , rowspan=3, 63(17) ms , β+ , 77Sr , rowspan=3, 5/2+# , rowspan=3, , - , p? , 76Sr , - , β+, p? , 76Rb , -id=Yttrium-78 , rowspan=2, 78Y , rowspan=2 style="text-align:right" , 39 , rowspan=2 style="text-align:right" , 39 , rowspan=2, 77.94399(32)# , rowspan=2, 54(5) ms , β+ , 78Sr , rowspan=2, (0+) , rowspan=2, , - , β+, p? , 77Rb , -id=Yttrium-78m , rowspan=2 style="text-indent:1em" , 78mYOrder of ground state and isomer is uncertain. , rowspan=2 colspan="3" style="text-indent:2em" , 0(500)# keV , rowspan=2, 5.8(6) s , β+ , 78Sr , rowspan=2, (5+) , rowspan=2, , - , β+, p? , 77Rb , -id=Yttrium-79 , 79Y , style="text-align:right" , 39 , style="text-align:right" , 40 , 78.937946(86) , 14.8(6) s , β+ , 79Sr , 5/2+# , , -id=Yttrium-80 , 80Y , style="text-align:right" , 39 , style="text-align:right" , 41 , 79.9343548(67) , 30.1(5) s , β+ , 80Sr , 4− , , -id=Yttrium-80m1 , rowspan=2 style="text-indent:1em" , 80m1Y , rowspan=2 colspan="3" style="text-indent:2em" , 228.5(1) keV , rowspan=2, 4.8(3) s , IT (81%) , 80Y , rowspan=2, 1− , rowspan=2, , - , β+ (19%) , 80Sr , -id=Yttrium-80m2 , style="text-indent:1em" , 80m2Y , colspan="3" style="text-indent:2em" , 312.6(9) keV , 4.7(3) μs , IT , 80Y , (2+) , , -id=Yttrium-81 , 81Y , style="text-align:right" , 39 , style="text-align:right" , 42 , 80.9294543(58) , 70.4(10) s , β+ , 81Sr , (5/2+) , , -id=Yttrium-82 , 82Y , style="text-align:right" , 39 , style="text-align:right" , 43 , 81.9269302(59) , 8.30(20) s , β+ , 82Sr , 1+ , , -id=Yttrium-82m1 , style="text-indent:1em" , 82m1Y , colspan="3" style="text-indent:2em" , 402.63(14) keV , 258(22) ns , IT , 82Y , 4− , , -id=Yttrium-82m2 , style="text-indent:1em" , 82m2Y , colspan="3" style="text-indent:2em" , 507.50(13) keV , 148(6) ns , IT , 82Y , 6+ , , -id=Yttrium-83 , 83Y , style="text-align:right" , 39 , style="text-align:right" , 44 , 82.922484(20) , 7.08(8) min , β+ , 83Sr , (9/2+) , , -id=Yttrium-83m , rowspan=2 style="text-indent:1em" , 83mY , rowspan=2 colspan="3" style="text-indent:2em" , 62.04(10) keV , rowspan=2, 2.85(2) min , β+ (60%) , 83Sr , rowspan=2, (3/2−) , rowspan=2, , - , IT (40%) , 83Y , -id=Yttrium-84 , 84Y , style="text-align:right" , 39 , style="text-align:right" , 45 , 83.9206711(46) , 39.5(8) min , β+ , 84Sr , (6+) , , -id=Yttrium-84m1 , style="text-indent:1em" , 84m1Y , colspan="3" style="text-indent:2em" , 67.0(2) keV , 4.6(2) s , β+ , 84Sr , 1+ , , -id=Yttrium-84m2 , style="text-indent:1em" , 84m2Y , colspan="3" style="text-indent:2em" , 210.42(16) keV , 292(10) ns , IT , 84Y , 4− , , -id=Yttrium-85 , 85Y , style="text-align:right" , 39 , style="text-align:right" , 46 , 84.916433(20) , 2.68(5) h , β+ , 85Sr , (1/2)− , , -id=Yttrium-85m1 , rowspan=2 style="text-indent:1em" , 85m1Y , rowspan=2 colspan="3" style="text-indent:2em" , 19.68(17) keV , rowspan=2, 4.86(20) h , β+ , 85Sr , rowspan=2, (9/2)+ , rowspan=2, , - , IT? , 85Y , -id=Yttrium-85m2 , style="text-indent:1em" , 85m2Y , colspan="3" style="text-indent:2em" , 266.18(10) keV , 178(7) ns , IT , 85Y , (5/2)− , , -id=Yttrium-86 , 86Y , style="text-align:right" , 39 , style="text-align:right" , 47 , 85.914886(15) , 14.74(2) h , β+ , 86Sr , 4− , , -id=Yttrium-86m1 , rowspan=2 style="text-indent:1em" , 86m1Y , rowspan=2 colspan="3" style="text-indent:2em" , 218.21(9) keV , rowspan=2, 47.4(4) min , IT (99.31%) , 86Y , rowspan=2, (8+) , rowspan=2, , - , β+ (0.69%) , 86Sr , -id=Yttrium-86m2 , style="text-indent:1em" , 86m2Y , colspan="3" style="text-indent:2em" , 302.18(9) keV , 125.3(55) ns , IT , 86Y , 6+ , , -id=Yttrium-87 , 87Y , style="text-align:right" , 39 , style="text-align:right" , 48 , 86.9108761(12) , 79.8(3) h , β+ , 87Sr , 1/2− , , -id=Yttrium-87m , rowspan=2 style="text-indent:1em" , 87mY , rowspan=2 colspan="3" style="text-indent:2em" , 380.82(7) keV , rowspan=2, 13.37(3) h , IT (98.43%) , 87Y , rowspan=2, 9/2+ , rowspan=2, , - , β+ (1.57%) , 87Sr , -id=Yttrium-88 , 88Y , style="text-align:right" , 39 , style="text-align:right" , 49 , 87.9095013(16) , 106.629(24) d , β+ , 88Sr , 4− , , -id=Yttrium-88m1 , style="text-indent:1em" , 88m1Y , colspan="3" style="text-indent:2em" , 392.86(9) keV , 301(3) μs , IT , 88Y , 1+ , , -id=Yttrium-88m2 , style="text-indent:1em" , 88m2Y , colspan="3" style="text-indent:2em" , 674.55(4) keV , 13.98(17) ms , IT , 88Y , 8+ , , -id=Yttrium-89 , 89Y
Fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
, style="text-align:right" , 39 , style="text-align:right" , 50 , 88.90583816(36) , colspan=3 align=center, Stable , 1/2− , 1.0000 , -id=Yttrium-89m , style="text-indent:1em" , 89mY , colspan="3" style="text-indent:2em" , 908.97(3) keV , 15.663(5) s , IT , 89Y , 9/2+ , , - , 90Y , style="text-align:right" , 39 , style="text-align:right" , 51 , 89.90714175(38) , 64.05(5) h , β , 90Zr , 2− , , -id=Yttrium-90m , rowspan=2 style="text-indent:1em" , 90mY , rowspan=2 colspan="3" style="text-indent:2em" , 682.01(5) keV , rowspan=2, 3.226(11) h , IT , 90Y , rowspan=2, 7+ , rowspan=2, , - , β (0.0018%) , 90Zr , -id=Yttrium-91 , 91Y , style="text-align:right" , 39 , style="text-align:right" , 52 , 90.9072980(20) , 58.51(6) d , β , 91Zr , 1/2− , , -id=Yttrium-91m , rowspan=2 style="text-indent:1em" , 91mY , rowspan=2 colspan="3" style="text-indent:2em" , 555.58(5) keV , rowspan=2, 49.71(4) min , IT , 91Y , rowspan=2, 9/2+ , rowspan=2, , - , β? , 91Zr , -id=Yttrium-92 , 92Y , style="text-align:right" , 39 , style="text-align:right" , 53 , 91.9089458(98) , 3.54(1) h , β , 92Zr , 2− , , -id=Yttrium-92m , style="text-indent:1em" , 92mY , colspan="3" style="text-indent:2em" , 807(50)# keV , 3.7(5) μs , IT , 92Y , 7+# , , -id=Yttrium-93 , 93Y , style="text-align:right" , 39 , style="text-align:right" , 54 , 92.909578(11) , 10.18(8) h , β , 93Zr , 1/2− , , -id=Yttrium-93m , style="text-indent:1em" , 93mY , colspan="3" style="text-indent:2em" , 758.719(21) keV , 820(40) ms , IT , 93Y , 9/2+ , , -id=Yttrium-94 , 94Y , style="text-align:right" , 39 , style="text-align:right" , 55 , 93.9115921(68) , 18.7(1) min , β , 94Zr , 2− , , -id=Yttrium-94m , style="text-indent:1em" , 94mY , colspan="3" style="text-indent:2em" , 1202.3(10) keV , 1.304(12) μs , IT , 94Y , (5+) , , -id=Yttrium-95 , 95Y , style="text-align:right" , 39 , style="text-align:right" , 56 , 94.9128197(73) , 10.3(1) min , β , 95Zr , 1/2− , , -id=Yttrium-95m , style="text-indent:1em" , 95mY , colspan="3" style="text-indent:2em" , 1087.6(6) keV , 48.6(5) μs , IT , 95Y , 9/2+ , , -id=Yttrium-96 , 96Y , style="text-align:right" , 39 , style="text-align:right" , 57 , 95.9159093(65) , 5.34(5) s , β , ''96Zr'' , 0− , , -id=Yttrium-96m1 , style="text-indent:1em" , 96m1Y , colspan="3" style="text-indent:2em" , 1540(9) keV , 9.6(2) s , β , ''96Zr'' , 8+ , , -id=Yttrium-96m2 , style="text-indent:1em" , 96m2Y , colspan="3" style="text-indent:2em" , 1655.0(11) keV , 181(9) ns , IT , 96Y , (6+) , , -id=Yttrium-97 , rowspan=2, 97Y , rowspan=2 style="text-align:right" , 39 , rowspan=2 style="text-align:right" , 58 , rowspan=2, 96.9182867(72) , rowspan=2, 3.75(3) s , β (99.945%) , 97Zr , rowspan=2, 1/2− , rowspan=2, , - , β, n (0.055%) , ''96Zr'' , -id=Yttrium-97m1 , rowspan=3 style="text-indent:1em" , 97m1Y , rowspan=3 colspan="3" style="text-indent:2em" , 667.52(23) keV , rowspan=3, 1.17(3) s , β (>99.2%) , 97Zr , rowspan=3, 9/2+ , rowspan=3, , - , IT (<0.7%) , 97Y , - , β, n (0.11%) , ''96Zr'' , -id=Yttrium-97m2 , rowspan=2 style="text-indent:1em" , 97m2Y , rowspan=2 colspan="3" style="text-indent:2em" , 3522.6(4) keV , rowspan=2, 142(8) ms , IT (94.8%) , 97Y , rowspan=2, (27/2−) , rowspan=2, , - , β (5.2%) , 97Zr , -id=Yttrium-98 , rowspan=2, 98Y , rowspan=2 style="text-align:right" , 39 , rowspan=2 style="text-align:right" , 59 , rowspan=2, 97.9223948(85) , rowspan=2, 548(2) ms , β (99.67%) , 98Zr , rowspan=2, 0− , rowspan=2, , - , β, n (0.33%) , 97Zr , -id=Yttrium-98m1 , style="text-indent:1em" , 98m1Y , colspan="3" style="text-indent:2em" , 170.78(5) keV , 615(8) ns , IT , 98Y , 2− , , -id=Yttrium-98m2 , rowspan=3 style="text-indent:1em" , 98m2Y , rowspan=3 colspan="3" style="text-indent:2em" , 465.7(7) keV , rowspan=3, 2.32(8) s , β (96.56%) , 98Zr , rowspan=3, (6,7)+ , rowspan=3, , - , β, n (3.44%) , 97Zr , - , IT? , 98Y , -id=Yttrium-98m3 , style="text-indent:1em" , 98m3Y , colspan="3" style="text-indent:2em" , 496.10(11) keV , 6.90(54) μs , IT , 98Y , (4)− , , -id=Yttrium-98m4 , style="text-indent:1em" , 98m4Y , colspan="3" style="text-indent:2em" , 594(10) keV , 180(7) ns , IT , 98Y , (3−,4−) , , -id=Yttrium-98m5 , style="text-indent:1em" , 98m5Y , colspan="3" style="text-indent:2em" , 972.17(20) keV , 450(150) ns , IT , 98Y , (8+) , , -id=Yttrium-98m6 , style="text-indent:1em" , 98m6Y , colspan="3" style="text-indent:2em" , 1181.50(18) keV , 762(14) ns , IT , 98Y , (10−) , , -id=Yttrium-99 , rowspan=2, 99Y , rowspan=2 style="text-align:right" , 39 , rowspan=2 style="text-align:right" , 60 , rowspan=2, 98.9241608(71) , rowspan=2, 1.484(7) s , β (98.23%) , 99Zr , rowspan=2, 5/2+ , rowspan=2, , - , β, n (1.77%) , 98Zr , -id=Yttrium-99m , style="text-indent:1em" , 99mY , colspan="3" style="text-indent:2em" , 2141.65(19) keV , 8.2(4) μs , IT , 99Y , (17/2+) , , -id=Yttrium-100 , rowspan=2, 100Y , rowspan=2 style="text-align:right" , 39 , rowspan=2 style="text-align:right" , 61 , rowspan=2, 99.927728(12) , rowspan=2, 940(30) ms , β , 100Zr , rowspan=2, 4+ , rowspan=2, , - , β, n? , 99Zr , -id=Yttrium-100m , rowspan=2 style="text-indent:1em" , 100mY , rowspan=2 colspan="3" style="text-indent:2em" , 144(16) keV , rowspan=2, 727(6) ms , β (98.92%) , 100Zr , rowspan=2, 1+# , rowspan=2, , - , β, n (1.08%) , 99Zr , -id=Yttrium-101 , rowspan=2, 101Y , rowspan=2 style="text-align:right" , 39 , rowspan=2 style="text-align:right" , 62 , rowspan=2, 100.9301608(76) , rowspan=2, 426(20) ms , β (97.7%) , 101Zr , rowspan=2, 5/2+ , rowspan=2, , - , β, n (2.3%) , 100Zr , -id=Yttrium-101m , style="text-indent:1em" , 101mY , colspan="3" style="text-indent:2em" , 1205.0(10) keV , 870(90) ns , IT , 101Y , 13/2−# , , -id=Yttrium-102 , rowspan=2, 102Y , rowspan=2 style="text-align:right" , 39 , rowspan=2 style="text-align:right" , 63 , rowspan=2, 101.9343285(44) , rowspan=2, 360(40) ms , β (>97.4%) , 102Zr , rowspan=2, (5−) , rowspan=2, , - , β, n (<2.6%) , 101Zr , -id=Yttrium-102m , rowspan=3 style="text-indent:1em" , 102mY , rowspan=3 colspan="3" style="text-indent:2em" , 100(100)# keV , rowspan=3, 300(100) ms , β (>97.4%) , 102Zr , rowspan=3, (0−,1−) , rowspan=3, , - , β, n (<2.6%) , 101Zr , - , IT? , 102Y , -id=Yttrium-103 , rowspan=2, 103Y , rowspan=2 style="text-align:right" , 39 , rowspan=2 style="text-align:right" , 64 , rowspan=2, 102.937244(12) , rowspan=2, 239(12) ms , β (92.0%) , 103Zr , rowspan=2, 5/2+# , rowspan=2, , - , β, n (8.0%) , 102Zr , -id=Yttrium-104 , rowspan=3, 104Y , rowspan=3 style="text-align:right" , 39 , rowspan=3 style="text-align:right" , 65 , rowspan=3, 103.94194(22)# , rowspan=3, 197(4) ms , β (66%) , 104Zr , rowspan=3, (0+,1+)# , rowspan=3, , - , β, n (34%) , 103Zr , - , β, 2n? , 102Zr , -id=Yttrium-105 , rowspan=3, 105Y , rowspan=3 style="text-align:right" , 39 , rowspan=3 style="text-align:right" , 66 , rowspan=3, 104.94571(43)# , rowspan=3, 95(9) ms , β , 105Zr , rowspan=3, 5/2+# , rowspan=3, , - , β, n (<82%) , 104Zr , - , β, 2n? , 103Zr , -id=Yttrium-106 , rowspan=3, 106Y , rowspan=3 style="text-align:right" , 39 , rowspan=3 style="text-align:right" , 67 , rowspan=3, 105.95084(54)# , rowspan=3, 75(6) ms , β , 106Zr , rowspan=3, 2+# , rowspan=3, , - , β, n? , 105Zr , - , β, 2n? , 104Zr , -id=Yttrium-107 , rowspan=3, 107Y , rowspan=3 style="text-align:right" , 39 , rowspan=3 style="text-align:right" , 68 , rowspan=3, 106.95494(54)# , rowspan=3, 33.5(3) ms , β , 107Zr , rowspan=3, 5/2+# , rowspan=3, , - , β, n? , 106Zr , - , β, 2n? , 105Zr , -id=Yttrium-108 , rowspan=3, 108Y , rowspan=3 style="text-align:right" , 39 , rowspan=3 style="text-align:right" , 69 , rowspan=3, 107.96052(64)# , rowspan=3, 30(5) ms , β , 108Zr , rowspan=3, 6−# , rowspan=3, , - , β, n? , 107Zr , - , β, 2n? , 106Zr , -id=Yttrium-109 , rowspan=3, 109Y , rowspan=3 style="text-align:right" , 39 , rowspan=3 style="text-align:right" , 70 , rowspan=3, 108.96513(75)# , rowspan=3, 25(5) ms , β , 109Zr , rowspan=3, 5/2+# , rowspan=3, , - , β, n? , 108Zr , - , β, 2n? , 107Zr , -id=Yttrium-110 , 110Y , style="text-align:right" , 39 , style="text-align:right" , 71 , , , , , , , -id=Yttrium-111 , 111Y , style="text-align:right" , 39 , style="text-align:right" , 72 , , , , , ,


See also

Daughter products other than yttrium *
Isotopes of zirconium Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (96Zr), a primordial nuclide that decays via double beta decay with an observed h ...
*
Isotopes of strontium The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). Its standard atomic weight is 87.62(1). Only 87Sr is radiogenic; it is produced by decay from ...
*
Isotopes of rubidium Rubidium (37Rb) has 36 isotopes, with naturally occurring rubidium being composed of just two isotopes; 85Rb (72.2%) and the radioactive 87Rb (27.8%). 87Rb has a half-life of . It readily substitutes for potassium in minerals, and is therefore ...


References

* Isotope masses from: ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** ** {{Navbox element isotopes Yttrium
Yttrium Yttrium is a chemical element; it has Symbol (chemistry), symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost a ...