In
statistics, a Yates analysis is an approach to analyzing data obtained from a
designed experiment
The design of experiments (DOE, DOX, or experimental design) is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associ ...
, where a
factorial design
In statistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all ...
has been used.
Full- and fractional-factorial designs are common in designed experiments for engineering and scientific applications. In these designs, each factor is assigned two levels, typically called the low and high levels, and referred to as "-" and "+". For computational purposes, the factors are scaled so that the low level is assigned a value of -1 and the high level is assigned a value of +1.
A full factorial design contains all possible combinations of low/high levels for all the factors. A fractional factorial design contains a carefully chosen subset of these combinations. The criterion for choosing the subsets is discussed in detail in the
fractional factorial designs
In statistics, fractional factorial designs are experimental designs consisting of a carefully chosen subset (fraction) of the experimental runs of a full factorial design. The subset is chosen so as to exploit the sparsity-of-effects principle ...
article.
Formalized by
Frank Yates
Frank Yates FRS (12 May 1902 – 17 June 1994) was one of the pioneers of 20th-century statistics.
Biography
Yates was born in Manchester, England, the eldest of five children (and only son) of seed merchant Percy Yates and his wife Edith. H ...
, a Yates analysis exploits the special structure of these designs to generate
least squares
The method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems (sets of equations in which there are more equations than unknowns) by minimizing the sum of the squares of the r ...
estimates for factor effects for all factors and all relevant interactions. The Yates analysis can be used to answer the following questions:
#What is the ranked list of factors?
#What is the goodness-of-fit (as measured by the residual standard deviation) for the various models?
The mathematical details of the Yates analysis are given in chapter 10 of Box, Hunter, and Hunter (1978).
The Yates analysis is typically complemented by a number of
graphical technique
Statistical graphics, also known as statistical graphical techniques, are graphics used in the field of statistics for data visualization.
Overview
Whereas statistics and data analysis procedures generally yield their output in numeric or tab ...
s such as the
dex mean plot and the
dex contour plot ("dex" stands for "design of experiments").
Yates Order
Before performing a Yates analysis, the data should be arranged in "Yates order". That is, given ''k'' factors, the ''k''
th column consists of 2
(''k'' - 1) minus signs (i.e., the low level of the factor) followed by 2
(''k'' - 1) plus signs (i.e., the high level of the factor). For example, for a full factorial design with three factors, the design matrix is
:
:
:
:
:
:
:
:
Determining the Yates order for fractional factorial designs requires knowledge of the
confounding structure
In statistics, a confounder (also confounding variable, confounding factor, extraneous determinant or lurking variable) is a variable that influences both the dependent variable and independent variable, causing a spurious association. Con ...
of the fractional factorial design.
Output
A Yates analysis generates the following output.
*A factor identifier (from Yates order). The specific identifier will vary depending on the program used to generate the Yates analysis.
Dataplot
Dataplot is a public domain software system for scientific visualization and statistical analysis. It was developed and is being maintained at the National Institute of Standards and Technology. Dataplot's source code
In computing, source cod ...
, for example, uses the following for a 3-factor model.
::1 = factor 1
::2 = factor 2
::3 = factor 3
::12 = interaction of factor 1 and factor 2
::13 = interaction of factor 1 and factor 3
::23 = interaction of factor 2 and factor 3
::123 = interaction of factors 1, 2, and 3
*A ranked list of important factors. That is, least squares estimated factor effects ordered from largest in magnitude (most significant) to smallest in magnitude (least significant).
*A
t-value for the individual factor effect estimates. The t-value is computed as
::
where ''e'' is the estimated factor effect and ''s
e'' is the
standard deviation of the estimated factor effect.
*The residual standard deviation that results from the model with the single term only. That is, the residual standard deviation from the model
::
where ''X
i'' is the estimate of the ''i''
th factor or interaction effect.
*The cumulative residual standard deviation that results from the model using the current term plus all terms preceding that term. That is,
::
This consists of a monotonically decreasing set of residual standard deviations (indicating a better fit as the number of terms in the model increases). The first cumulative residual standard deviation is for the model
::
where the constant is the overall mean of the response variable. The last cumulative residual standard deviation is for the model
::
This last model will have a residual standard deviation of zero.
Parameter estimates as terms are added
In most cases of least squares fitting, the model coefficients for previously added terms change depending on what was successively added. For example, the ''X''
1 coefficient might change depending on whether or not an ''X''
2 term was included in the model. This is not the case when the design is orthogonal, as is a 2
3 full factorial design. For orthogonal designs, the estimates for the previously included terms do not change as additional terms are added. This means the ranked list of effect estimates simultaneously serves as the least squares coefficient estimates for progressively more complicated models.
Model selection and validation
From the above Yates output, one can define the potential models from the Yates analysis. An important component of a Yates analysis is selecting the best model from the available potential models. The above step lists all the potential models. From this list, we want to select the most appropriate model. This requires balancing the following two goals.
#We want the model to include all important factors.
#We want the model to be parsimonious. That is, the model should be as simple as possible.
In short, we want our model to include all the important factors and interactions and to omit the unimportant factors and interactions. Note that the residual standard deviation alone is insufficient for determining the most appropriate model as it will always be decreased by adding additional factors. Instead, seven criteria are utilized to define important factors. These seven criteria are not all equally important, nor will they yield identical subsets, in which case a consensus subset or a weighted consensus subset must be extracted. In practice, some of these criteria may not apply in all situations, and some analysts may have additional criteria. These criteria are given as useful guidelines. Mosts analysts will focus on those criteria that they find most useful.
#
Practical significance of effects
#
Order of magnitude
An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic di ...
of effects
#
Statistical significance
In statistical hypothesis testing, a result has statistical significance when it is very unlikely to have occurred given the null hypothesis (simply by chance alone). More precisely, a study's defined significance level, denoted by \alpha, is the p ...
of effects
#
Probability plots of effects
#
Youden plot of averages
#Practical significance of
residual standard deviation
#Statistical significance of
residual standard deviation
The first four criteria focus on
effect size
In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the ...
s with three numeric criteria and one graphical criterion. The fifth criterion focuses on averages. The last two criteria focus on the residual standard deviation of the model. Once a tentative model has been selected, the error term should follow the assumptions for a univariate measurement process. That is, the model should be validated by analyzing the residuals.
Graphical presentation
Some analysts may prefer a more graphical presentation of the Yates results. In particular, the following plots may be useful:
#Ordered
data plot
A plot is a graphical technique for representing a data set, usually as a graph showing the relationship between two or more variables. The plot can be drawn by hand or by a computer. In the past, sometimes mechanical or electronic plotters were us ...
#Ordered absolute effects plot
#Cumulative residual standard deviation plot
Related Techniques
*
Multi-factor analysis of variance
*
Dex mean plot
*
Block plot
*
Dex contour plot
References
*
* . Here: sect. 4.3.4.
* . Here: p. 45, 96-103.
* . Here: p. 66-67.
{{NIST-PD
External links
Yates Analysis
Design of experiments