HOME

TheInfoList



OR:

Wreck Cove is the largest hydroelectric system in
Nova Scotia Nova Scotia is a Provinces and territories of Canada, province of Canada, located on its east coast. It is one of the three Maritime Canada, Maritime provinces and Population of Canada by province and territory, most populous province in Atlan ...
with a generating capacity of 215.8 MW. Constructed from 1975 to 1978, south of the
Cape Breton Highlands National Park Cape Breton Highlands National Park is a Canadian National Parks of Canada, national park on northern Cape Breton Island in Nova Scotia. The park was the first national park in the The Maritimes, Atlantic provinces of Canada and covers an ar ...
, Wreck Cove collects drainage water from of the
Cape Breton Highlands The Cape Breton Highlands (, ), commonly called the Highlands, refer to a highland or mountainous plateau across the northern part of Cape Breton Island in the Canadian province of Nova Scotia. Considered a subrange of the Appalachian mountai ...
plateau to generate renewable electricity. It consists of two generating stations: the Gisborne Generating Station, with an installed capacity of 3.5 MW, and the Wreck Cove Generating Station, with an installed capacity of 212 MW, producing on average 318 GWh annually—enough energy to power about 30,000 homes. There are 33 hydro stations across Nova Scotia, with a total capacity of 400 MW. Wreck Cove makes up half of that hydro capacity, making it a key provider of reliable, renewable energy needed to complement and back up the 600 MW of clean—but unpredictable—
wind power Wind power is the use of wind energy to generate useful work. Historically, wind power was used by sails, windmills and windpumps, but today it is mostly used to generate electricity. This article deals only with wind power for electricity ge ...
on the province's electrical system. The Wreck Cove hydroelectric facility is the only one in the province that can go from zero to full output in under 10 minutes.


Purpose

Wreck Cove primary purpose is to generate electricity, to supply Nova Scotia Powers'
electrical grid An electrical grid (or electricity network) is an interconnected network for electricity delivery from producers to consumers. Electrical grids consist of power stations, electrical substations to step voltage up or down, electric power tran ...
, but the unique nature of the installation also allows Wreck Cove to play a critical role in NS Power's ability to meet the reliability standards defined by
North American Electric Reliability Corporation The North American Electric Reliability Corporation (NERC) is a nonprofit corporation based in Atlanta, Georgia, and formed on March 28, 2006, as the successor to the North American Electric Reliability Council (also known as NERC). The original ...
(NERC) and
Northeast Power Coordinating Council The Northeast Power Coordinating Council (NPCC) was formed on January 19, 1966, as a successor to the Canada–United States Eastern Interconnection (CANUSE). It was established to improve the reliability of electric service. NPCC is one of six ...
(NPCC) and also provides other Grid Reliability Services:


NERC/NPCC requirements


Black Start Requirements

Under NERC, Nova Scotia Power must maintain multiple
black start A black start is the process of restoring an electric power station, a part of an electric grid or an industrial plant, to operation without relying on the external transmission network, electric power transmission network to recover from a tota ...
pathways to restart the grid should a black-out ever occur. Wreck Cove is one of the two pathways Nova Scotia Power uses to meet this NERC requirement.


Planning Reserve Margin

Nova Scotia Power must maintain sufficient capacity to serve its
peak load Peak demand on an electrical grid is the highest electrical power demand that has occurred over a specified time period (Gönen 2008). Peak demand is typically characterized as annual, daily or seasonal and has the unit of power. Peak demand, pe ...
as well as additional capacity for the planning reserve margin (PRM). The PRM acts as a resource to respond to a contingency to ensure customer load can be served in the event unexpected generation restrictions or supply requirements arise. For example, the PRM capacity ensures adequate generation in the event that one or more generation resources are unavailable or cannot run at full capacity at the time of system peak. Planning reserves also account for uncertainties in demand forecasting and resource availability. The Wreck Cove system contributes approximately 8 percent towards NS Power's total required capacity in 2020, assuming a PRM of 20 percent.


Operating Reserve Capacity Requirements (10 min reserve)

NERC/NPCC requires electric utilities to have their largest single energy production source covered by an alternative source in reserve capacity. Currently, NS Power's largest single unit is Point Aconi Generating Station which produces 168 MW of operating capacity. Wreck Cove Units 1 and 2 have an accredited capability of 106 MW each unit (212 MW total), making this facility an important provider of this service. As such, the reliable operation of the Wreck Cove Generating Station provides Nova Scotia Power's ability to meet this requirement. NPCC also requires that operating reserve capacity be available and on the grid within 10 minutes. If Wreck Cove's Units 1 and 2 are off-line, they can be brought onto the grid and reach full capacity within the 10-minute requirement.


Tie-Line Regulation

Wreck Cove assists with providing tie-line regulation. Nova Scotia Power is required to have reserve capacity available for changes in demand across the tie-line to
New Brunswick New Brunswick is a Provinces and Territories of Canada, province of Canada, bordering Quebec to the north, Nova Scotia to the east, the Gulf of Saint Lawrence to the northeast, the Bay of Fundy to the southeast, and the U.S. state of Maine to ...
. Because Wreck Cove is capable of changing its output at the rate of 20 MW/min, it is more effective in responding to fluctuations in Nova Scotia system load and wind generation than slower acting thermal generation sources, which can be moved at a rate of 0.5 MW to 2 MW per minute.


Energy Balancing and Wind Following

Wreck Cove 1 has been utilized in recent years as a means of balancing energy generation throughout the cycles associated with wind generation. Nova Scotia Power's hydroelectric generation provides load/wind following services, meaning that the hydroelectric generation is dispatchable and can be used to mitigate the impacts resulting from the high variability of wind generation resources and associated forecasting variations. Although wind following was not the original intent for the use of Wreck Cove, having the ability to utilize Wreck Cove in this way has supported the development and integration of wind generation on the grid. This service is related to the Tie-Line Regulation discussed above, but over a longer time frame. The flexibility of Wreck Cove's load response is also critical to managing periods of short term, large scale load changes (pickup and drop-off) from industrial customers on the grid.


Grid Reliability Services


Load Shaving Capacity

Wreck Cove provides critical peak load shaving capacity for the short periods of high load that occur daily, typically during morning and evening peak hours. Given Wreck Cove can be brought on-line quickly for these periods of high load ramping, thermal generation resources which cannot be cycled off-and-on frequently can be more economically dispatched.


Scheduling and Dispatch

Wreck Cove is a source of 212 MW of stored power for Nova Scotia Power to use when needed. It can operate at maximum power for 4–6 hours depending on conditions, at which time it needs to allow water from farther upstream in the watershed to make its way to Surge Lake.


Reactive Supply and Voltage Control

Nova Scotia Power's 33 hydro plants/50 hydro units provide 180 MVar of dynamic reactive power to the system. The Nova Scotia Power System Operator controls generators to absorb or produce reactive power to control system voltage. Wreck Cove is located at the eastern end of the transmission grid and therefore its ability to support load is less important than generation closer to the load centre; however, due to its relative size, its dynamic reactive power contributes to stabilizing the grid following disturbances.


Primary Frequency Response

Wreck Cove, like all hydro and thermal generators, is equipped with speed governors which maintain the scheduled grid frequency of 60 Hz. It provides a significant contribution to system inertia, which stabilizes the grid frequency during disturbances.


System Strength

Hydro generation contributes to system inertia, which allows the system to
ride through In electrical power engineering, fault ride through (FRT), sometimes under-voltage ride through (UVRT), or low voltage ride through (LVRT), is the capability of electric generators to stay connected in short periods of lower electric network vol ...
fault conditions, and short circuit strength, which provides the high fault current levels needed to activate system protection devices (inverter-based wind, tidal and solar do not materially contribute to this).


History


Planning

The project land were owned by the Province, with the exception of the Chéticamp Lake area which was owned by the federal government and formed part of the Cape Breton Highlands National Park. At the request of the Province, the latter was removed from the Park in 1958 when planning for the project first began. Since that time these lands have been managed by the
Department of Indian and Northern Affairs Department may refer to: * Departmentalization, division of a larger organization into parts with specific responsibility Government and military *Department (administrative division), a geographical and administrative division within a country, ...
as federal crown lands but were not subject to the National Parks Act. The
Nova Scotia Power Nova Scotia Power Inc. is a vertical integration, vertically integrated electric utility in Nova Scotia, Canada. It is privately owned by Emera and regulated by the provincial government via the Nova Scotia Utility and Review Board (NSUARB). Nov ...
Corporation (NSPC) recommenced planning for the project in 1974. At that time the Minister of Indian and Northern Affairs agreed in principle to an exchange of the Chéticamp Lake lands for those of an equivalent natural value elsewhere in the Province, on the condition that there should be no adverse effects from the project or the National Park. In late 1974 a private consultant prepared a preliminary environmental evaluation of the project's probable effects. Following a review of this evaluation a resolution was passed by the Nova Scotia Legislature in January 1975 indicating that the project was to proceed, and "that a phased environmental assessment be undertaken to minimize potential adverse effects". In March 1975, Nova Scotia Minister of the Environment, Mr. Bagnell, joined with Mme Sauve, the federal Minister of the Environment, in calling for a new assessment of the project's environmental effects with particular emphasis on the segment involving the Chéticamp River system. Details of the agreement were contained in a March 1975 joint Canada-Nova Scotia press release. The Nova Scotia Department of the Environment was to be responsible for the coordination of the assessment and the NSPC was to produce the Environmental Impact Statement (EIS) under joint guidelines approved by the federal and Nova Scotia Departments of Environment. Both Environment Departments were to co-chair a public meeting on completion of the EIS. The federal government chose the Environmental Assessment and Review Process (EARP) as the federal review mechanism. All Panel members came from the Department of the Environment with the exception of one member from Parks Canada. A series of public meeting and public consultations were held in
Baddeck Baddeck () is a village on Cape Breton Island in northeastern Nova Scotia, Canada. It is situated in the center of Cape Breton, approximately 6 km east of where the Baddeck River empties into Bras d'Or Lake. Baddeck is the shire-town of t ...
, Halifax, and
Sydney Sydney is the capital city of the States and territories of Australia, state of New South Wales and the List of cities in Australia by population, most populous city in Australia. Located on Australia's east coast, the metropolis surrounds Syd ...
. The Final Environmental Impact Statement was produced by the Nova Scotia Power Corporation and distributed in May, 1977. Following review, the Nova Scotia Department of the Environment found that all provincial environmental concerns had been adequately dealt with. In the end the Panel concluded that the Chéticamp portion of the Wreck Cove hydroelectric project may be constructed and operated with acceptable environmental impact provided the recommendations advanced in their report were implemented.


Construction

Between 1975 and 1978, more than 2.5 million cubic metres of rock were blasted and removed to construct the facility's 11 major
dam A dam is a barrier that stops or restricts the flow of surface water or underground streams. Reservoirs created by dams not only suppress floods but also provide water for activities such as irrigation, human consumption, industrial use, aqua ...
s and associated wing dams. All are earth dams or rockfill dams with an impervious material in the middle (the core dam), with filter material at both sides and rockfill on each dam for stability. The development involved the diversion of seven headwater streams, including Indian Brook, West Indian Brook and MacMillan's Brook, Wreck Cove River, MacLeod's Brook, the Ingonish River and the headwaters of Chéticamp River. Several large lakes were formed, Wreck Cove Flowage, Gisbourne, MacMillan Lake, Chéticamp Lake, all linked by canals and tunnels, guiding the water to Surge Lake at the head of the
penstock A penstock is a sluice or gate or intake structure that controls water flow, or an enclosed pipe that delivers water to hydro turbines and sewerage systems. The term is of Scots origin, and was inherited from the earlier technology of mill pond ...
, where it drops to the
underground powerhouse An underground power station is a type of hydroelectric power station constructed by excavating the major components (e.g. machine hall, penstocks, and tailrace) from rock, rather than the more common surface-based construction methods. One or mo ...
and then follows the tailrace tunnel to the sea. It required one of the largest fleets of earth-moving equipment in Nova Scotia's history and employed approximately 900 people. The Wreck Cove Hydro Station produced its first energy on 27 March 1978.


Technical characteristics


Dams, Wing Dams, Spillways, and Canals

There are 21 dams of various heights and lengths holding back the several reservoirs that make up the Wreck Cove Hydroelectric System: Water moves from Chéticamp Flowage (El. ), via canal C-1, to Ingonish I (El. ), then canal C-2 to Ingonish II (El. ) reservoirs, and on to canal C-3 which discharges into Gisborne Flowage (El. ). Here is it joined with water from MacMillan Flowage (El. ) via tunnel T1, a long, diameter tunnel, to Gisborne, where electricity is generated through the Gisborne Powerhouse's horizontal
turbo generator A turbo generator is an electric generator connected to the shaft of a turbine (water, steam, or gas) for the generation of electric power. Large steam-powered turbo generators provide the majority of the world's electricity and are also u ...
unit. The water then follows canals C-5 & 6 to the Wreck Cove Flowage Reservoir (El. ), and then travels via T2, a long diameter inverted siphon tunnel, to the head pond, Surge Lake. A blasted, concrete lined penstock, in diameter, then carries water down to the power house below.


Power House

The Wreck Cove station's powerhouse is located underground, accessible down a access tunnel. The powerhouse, which was carved out of the
granite Granite ( ) is a coarse-grained (phanerite, phaneritic) intrusive rock, intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly coo ...
of the mountain, is long, wide, and high (from the base of the valve wells to the roof). The bottom of the valve wells are below sea level, the centreline of the turbines are at an elevation of above sea level. The main floor of the power house is at , with the cavern's roof arch rising to above sea level. At the base of the power house, the concrete lined penstock transitions into a bifurcation and steel lined horizontal penstock, long. These now paired penstocks deliver the high pressure water to the two diameter spherical turbine inlet shutoff valves ( Dominion Engineering Works) that feed into Wreck Cove's two vertical 101 MW
francis turbine The Francis turbine is a type of water turbine. It is an inward-flow reaction turbine that combines radial and axial flow concepts. Francis turbines are the most common water turbine in use today, and can achieve over 95% efficiency. The pro ...
(
Mitsubishi Motors is a Japanese Multinational corporation, multinational Automotive industry, automobile manufacturer headquartered in Minato, Tokyo, Japan.
) generator units (
Canadian General Electric GE Canada (or General Electric Canada) is the wholly-owned Canadian unit of General Electric, manufacturing various consumer and industrial electrical products all over Canada. GE Canada was preceded by the company Canadian General Electric (CGE ...
). The water then is carried to the tailrace,Dictionary definition of "tailrace"
/ref> which is another tunnel approximately wide. The slope of the tailrace is very low, about in (a 0.028% downslope). The top of the tailrace at the sea is always above high tide though the base is at below sea level. All in all, water will have travelled as much as 30 km from the Chéticamp Flowage to the tailrace's outlet at the sea. The Wreck Cove plant design is creative; hydro turbines frequently rely on large water volume and flow rates to operate. In this case, the series of dams on the plateau above the powerhouse provide a supply of very high pressure water to the hydro turbines for electricity generation, requiring less flow for the same output due to the high pressure differential. Wreck Cove takes advantage of the Cape Breton Highland's natural topography to provide cost-effective, clean electricity.


Tours

Tours of the facility have been given in the past, they are now rare occurrences. Quoting Paul Breski, the superintendent of Wreck Cove Hydro on visitor's reaction to the underground power house: "The biggest 'wow' factor is really when they walk into the power house for the first time," he said. "We have a ceramic floor and 30-metre ceiling and a huge overhead crane. It literally looks like a James Bond villain's lair."


Refurbishment

Wreck Cove underwent a $13.5 million refurbishment in 2015–16, the first major work to take place there since its construction. This work included some of the reservoirs and dams, with a $5.8-million refurbishment to ensure updated national dam guidelines were met. Crews striped away the riprap, which is a man-made barrier of rocks that protects the dam, and doubled its thickness to six feet to ensure it can withstand large waves that could be generated in a severe storm. The project also involved raising the dam by . The refurbishment is expected to extend the life of the dam by 70 years.


Modernisation

In February 2020, Nova Scotia Power Inc. applied for approval from the provincial regulator, the
Nova Scotia Utility and Review Board The Nova Scotia Utility and Review Board (NSUARB) was an independent tribunal responsible for regulating public utilities and fulfilling a variety of adjudicative functions in Nova Scotia. On April 1, 2025, the NSUARB's responsibilities were transf ...
(UARB), for a $110-million life extension and modernization (LEM) of the hydroelectric facility. The work is being carried out in a two-phase project. The first phase of the project, now complete, included replacing the two Wreck Cove generator units; refurbishing the two
turbine A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical ...
units, including replacing the turbine runners; refurbishing the spherical valves; and upgrading the penstock intake at Surge Lake. The LEM project will increase the flexible operating range of the units and it is estimated it will increase Wreck Cove system annual generation from 300 GWh to a forecast 315 GWh. The second phase will primarily involve the rehabilitation of the station breakers and
switchgear In an electric power system, a switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to ...
, and the replacement of the cooling water systems at the plant, as well as plant system upgrades. Nova Scotia Power said most of the gear and systems it will replace are either at the end at the useful lives, obsolete, degraded or do not meet current operational requirements. Much of the equipment slated for replacement is original to the nearly 45-year-old power plant. The UARB approved the project, with approval of the second phase granted in June 2021. The objective of the LEM initiative is to enable the Wreck Cove Generating station to continue to provide renewable generation and system stability for the next 40 years. The Wreck Cove facility is critical for meeting Nova Scotia Power's environmental emissions caps and renewable energy targets.


See also


Wreck Cove Hydro Tour (video) 1:18 - July 2018Wreck Cove 101 (Nova Scotia Power) (video) 3:09 - June 2022


References

{{Hydropower 1978 establishments in Nova Scotia Hydroelectric power stations in Nova Scotia Underground power stations Energy infrastructure completed in 1978 Nova Scotia Power