HOME

TheInfoList



OR:

In
physical oceanography Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters. Physical oceanography is one of several sub-domains into which oceanography is div ...
and
fluid dynamics In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including (the study of air and other gases in motion ...
, the wind stress is the
shear stress Shear stress (often denoted by , Greek alphabet, Greek: tau) is the component of stress (physics), stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross secti ...
exerted by the
wind Wind is the natural movement of atmosphere of Earth, air or other gases relative to a planetary surface, planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heatin ...
on the
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
of large bodies of water – such as
ocean The ocean is the body of salt water that covers approximately 70.8% of Earth. The ocean is conventionally divided into large bodies of water, which are also referred to as ''oceans'' (the Pacific, Atlantic, Indian Ocean, Indian, Southern Ocean ...
s,
sea A sea is a large body of salt water. There are particular seas and the sea. The sea commonly refers to the ocean, the interconnected body of seawaters that spans most of Earth. Particular seas are either marginal seas, second-order section ...
s,
estuaries An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. Estuaries form a transition zone between river environments and maritime environm ...
and
lake A lake is often a naturally occurring, relatively large and fixed body of water on or near the Earth's surface. It is localized in a basin or interconnected basins surrounded by dry land. Lakes lie completely on land and are separate from ...
s. When wind is blowing over a water surface, the wind applies a wind force on the water surface. The wind stress is the component of this wind force that is parallel to the surface per unit area. Also, the wind stress can be described as the
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport phe ...
of horizontal
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
applied by the wind on the water surface. The wind stress causes a deformation of the water body whereby
wind wave In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is ...
s are generated. Also, the wind stress drives
ocean current An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. Depth contours, sh ...
s and is therefore an important driver of the large-scale ocean circulation. The wind stress is affected by the
wind speed In meteorology, wind speed, or wind flow speed, is a fundamental atmospheric quantity caused by air moving from high to low pressure, usually due to changes in temperature. Wind speed is now commonly measured with an anemometer. Wind spe ...
, the shape of the wind waves and the
atmospheric stratification The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weathe ...
. It is one of the components of the air–sea interaction, with others being the
atmospheric pressure Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1,013. ...
on the water surface, as well as the exchange of
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
and
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
between the water and the
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
.


Background

Stress is the
quantity Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a u ...
that describes the magnitude of a
force In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
that is causing a deformation of an object. Therefore, stress is defined as the force per unit area and its
SI unit The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of units of measurement, system of measurement. It is the only system ...
is the Pascal. When the deforming force acts parallel to the object's surface, this force is called a
shear force In solid mechanics, shearing forces are unaligned forces acting on one part of a Rigid body, body in a specific direction, and another part of the body in the opposite direction. When the forces are Collinearity, collinear (aligned with each ot ...
and the stress it causes is called a
shear stress Shear stress (often denoted by , Greek alphabet, Greek: tau) is the component of stress (physics), stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross secti ...
.


Dynamics

Wind blowing over an ocean at rest first generates small-scale wind waves which extract energy and momentum from the wave field. As a result, the momentum flux (the rate of momentum transfer per unit area per unit time) generates a current. These surface currents are able to transport energy (e.g.
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
) and mass (e.g. water or
nutrient A nutrient is a substance used by an organism to survive, grow and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi and protists. Nutrients can be incorporated into cells for metabolic purposes or excret ...
s) around the globe. The different processes described here are depicted in the sketches shown in figures 1.1 till 1.4. Interactions between wind, wind waves and currents are an essential part of the world
ocean dynamics Ocean dynamics define and describe the flow of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean dynamics ...
. Eventually, the wind waves also influence the wind field leading to a complex interaction between wind and water whereof the research for a correct theoretical description is ongoing. The
Beaufort scale The Beaufort scale ( ) is an empirical measure that relates wind speed to observed conditions at sea or on land. Its full name is the Beaufort wind force scale. It was devised in 1805 by Francis Beaufort a hydrographer in the Royal Navy. It ...
quantifies the correspondence between wind speed and different sea states. Only the top layer of the ocean (
mixed layer The oceanic or limnological mixed layer is a layer in which active turbulence has homogenized some range of depths. The surface mixed layer is a layer where this turbulence is generated by winds, surface heat fluxes, or processes such as evaporat ...
) is stirred by the wind stress. This upper layer of the ocean has a depth on the order of 10m. The wind blowing parallel to a water surface deforms that surface as a result of shear action caused by the fast wind blowing over the stagnant water. The wind blowing over the surface applies a shear force on the surface. The wind stress is the component of this force that acts parallel to the surface per unit area. This wind force exerted on the water surface due to shear stress is given by: : \begin F_x & = \frac\frac, \\ ptF_y & = \frac\frac. \end Here, ''F'' represents the shear force per unit mass (default), \rho represents the
air density The density of air or atmospheric density, denoted '' ρ'', is the mass per unit volume of Earth's atmosphere at a given point and time. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmosph ...
and \tau represents the wind shear stress. Furthermore, ''z'' is the lifting direction as ''x'' corresponds to the zonal direction, ''y'' corresponds to the meridional direction. The vertical
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
s of the wind stress components are also called the vertical eddy
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
. The equation describes how the force exerted on the water surface decreases for a denser atmosphere or, to be more precise, a denser
atmospheric boundary layer In meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. On Ea ...
(this is the layer of a fluid where the influence of friction is felt). On the other hand, the exerted force on the water surface increases when the vertical eddy viscosity increases. The wind stress can also be described as a downward transfer of
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
and
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
from the air to the water. The magnitude of the wind stress (\tau) is often parametrized as a function of wind speed U_h at a certain
height Height is measure of vertical distance, either vertical extent (how "tall" something or someone is) or vertical position (how "high" a point is). For an example of vertical extent, "This basketball player is 7 foot 1 inches in height." For an e ...
h above the surface in the form :\tau_\text = \rho_\text C_D U_h^2. Here, \rho_\text is the density of the surface air and ''CD'' is a dimensionless wind drag coefficient which is a repository function for all remaining dependencies. An often used value for the drag coefficient is C_D = 0.0015. Since the exchange of energy, momentum and moisture is often parametrized using bulk atmospheric formulae, the equation above is the semi-empirical bulk formula for the surface wind stress. The height at which the wind speed is referred to in wind drag formulas is usually 10 meters above the water surface. The formula for the wind stress explains how the stress increases for a denser atmosphere and higher wind speeds. When shear force caused by stress is in balance with the
Coriolis force In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
, this can be written as: :\begin \Sigma F_x = \frac\frac + fv = 0,\\ -fv & = \frac\frac;\\ \Sigma F_y = \frac\frac - fu = 0,\\ fu & = \frac\frac. \end where ''f'' is the
Coriolis parameter The Coriolis frequency ''ƒ'', also called the Coriolis parameter or Coriolis coefficient, is equal to twice the rotation rate ''Ω'' of the Earth multiplied by the sine of the latitude \varphi. f = 2 \Omega \sin \varphi.\, The rotation rate of ...
, ''u'' and ''v'' are respectively the zonal and meridional currents and +fv and -fu are respectively the zonal
Coriolis force In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
s and meridional
Coriolis force In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
s. This balance of forces is known as the Ekman balance. Some important assumptions that underlie the Ekman balance are that there are no boundaries, an infinitely deep water layer, constant vertical eddy viscosity, barotropic conditions with no geostrophic flow and a constant Coriolis parameter. The oceanic currents that are generated by this balance are referred to as Ekman currents. In the
Northern Hemisphere The Northern Hemisphere is the half of Earth that is north of the equator. For other planets in the Solar System, north is defined by humans as being in the same celestial sphere, celestial hemisphere relative to the invariable plane of the Solar ...
, Ekman currents at the surface are directed with an angle of 45° to the right of the wind stress direction and in the Southern Hemisphere they are directed with the same angle to the left of the wind stress direction. Flow directions of deeper positioned currents are deflected even more to the right in the Northern Hemisphere and to the left in the Southern Hemisphere. This phenomenon is called the
Ekman spiral Ekman transport is part of Ekman motion theory, first investigated in 1902 by Vagn Walfrid Ekman. Winds are the main source of energy for ocean circulation, and Ekman transport is a component of wind-driven ocean current. Ekman transport occurs ...
. The
Ekman transport Ekman transport is part of Ekman motion theory, first investigated in 1902 by Vagn Walfrid Ekman. Winds are the main source of energy for ocean circulation, and Ekman transport is a component of wind-driven ocean current. Ekman transport occurs w ...
can be obtained from vertically integrating the Ekman balance, giving: : \begin U_E & = \frac, \\ ptV_E & = -\frac, \end where ''D'' is the depth of the
Ekman layer Ekman transport is part of Ekman motion theory, first investigated in 1902 by Vagn Walfrid Ekman. Winds are the main source of energy for ocean circulation, and Ekman transport is a component of wind-driven ocean current. Ekman transport occurs ...
. Depth-averaged
Ekman transport Ekman transport is part of Ekman motion theory, first investigated in 1902 by Vagn Walfrid Ekman. Winds are the main source of energy for ocean circulation, and Ekman transport is a component of wind-driven ocean current. Ekman transport occurs w ...
is directed
perpendicular In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
to the wind stress and, again, directed to the right of the wind stress direction in the Northern Hemisphere and to the left of the wind stress direction in the Southern Hemisphere. Alongshore winds therefore generate transport towards or away from the coast. For small values of ''D'', water can return from or to deeper water layers, resulting in Ekman up- or downwelling. Upwelling due to Ekman transport can also happen at the
equator The equator is the circle of latitude that divides Earth into the Northern Hemisphere, Northern and Southern Hemisphere, Southern Hemispheres of Earth, hemispheres. It is an imaginary line located at 0 degrees latitude, about in circumferen ...
due to the change of sign of the Coriolis parameter in the Northern and Southern Hemisphere and the stable easterly winds that are blowing to the North and South of the equator. Due to the strong temporal variability of the wind, the wind forcing on the ocean surface is also highly variable. This is one of the causes of the internal variability of ocean flows as these changes in the wind forcing cause changes in the wave field and the thereby generated currents. Variability of ocean flows also occurs because the changes of the wind forcing are disturbances of the mean ocean flow, which leads to instabilities. A well known phenomenon that is caused by changes in surface wind stress over the tropical Pacific is the
El Niño-Southern Oscillation EL, El or el may refer to: Arts and entertainment Fictional entities * El, a character from the manga series ''Shugo Chara!'' by Peach-Pit * Eleven (''Stranger Things'') (El), a fictional character in the TV series ''Stranger Things'' * El, fami ...
(ENSO).


Global wind stress patterns

The global annual mean wind stress forces the global ocean circulation. Typical values for the wind stress are about 0.1Pa and, in general, the zonal wind stress is stronger than the meridional wind stress as can be seen in figures 2.1 and 2.2. It can also be seen that the largest values of the wind stress occur in the Southern Ocean for the zonal direction with values of about 0.3Pa. Figures 2.3 and 2.4 show that monthly variations in the wind stress patterns are only minor and the general patterns stay the same during the whole year. It can be seen that there are strong easterly winds (i.e. blowing toward the West), called easterlies or
trade winds The trade winds or easterlies are permanent east-to-west prevailing winds that flow in the Earth's equatorial region. The trade winds blow mainly from the northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere ...
near the equator, very strong westerly winds at midlatitudes (between ±30° and ±60°), called westerlies, and weaker easterly winds at polar latitudes. Also, on a large annual scale, the wind-stress field is fairly zonally homogeneous. Important meridional wind stress patterns are northward (southward) currents on the eastern (western) coasts of continents in the Northern Hemisphere and on the western (eastern) coast in the Southern Hemisphere since these generate coastal upwelling which causes biological activity. Examples of such patterns can be observed in figure 2.2 on the East coast of North America and on the West coast of South America.


Large-scale ocean circulation

Wind stress is one of the drivers of the large-scale ocean circulation with other drivers being the
gravitational In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force be ...
pull exerted by the Moon and Sun, differences in atmospheric pressure at sea level and
convection Convection is single or Multiphase flow, multiphase fluid flow that occurs Spontaneous process, spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoy ...
resulting from atmospheric cooling and
evaporation Evaporation is a type of vaporization that occurs on the Interface (chemistry), surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evapora ...
. However, the contribution of the wind stress to the forcing of the oceanic general circulation is largest. Ocean waters respond to the wind stress because of their low resistance to shear and the relative consistence with which winds blow over the ocean. The combination of easterly winds near the equator and westerly winds at midlatitudes drives significant circulations in the North and South Atlantic Oceans, the North and South Pacific Oceans and the Indian Ocean with westward currents near the equator and eastward currents at midlatitudes. This results in characteristic
gyre In oceanography, a gyre () is any large system of ocean surface currents moving in a circular fashion driven by wind movements. Gyres are caused by the Coriolis effect; planetary vorticity, horizontal friction and vertical friction determine the ...
flows in the Atlantic and Pacific consisting of a subpolar and subtropical gyre. The strong westerlies in the Southern ocean drive the Antarctic Circumpolar Current which is the dominant current in the Southern Hemisphere whereof no comparable current exists in the Northern Hemisphere. The equations to describe large-scale ocean dynamics were formulated by Harald Sverdrup and came to be known as Sverdrup dynamics. Important is the
Sverdrup balance The Sverdrup balance, or Sverdrup relation, is a theoretical relationship between the wind stress exerted on the surface of the open ocean and the vertically integrated meridional (north-south) transport of ocean water. History Aside from the ...
which describes the relation between the wind stress and the vertically integrated meridional transport of water. Other significant contributions to the description of large-scale ocean circulation were made by
Henry Stommel Henry Melson Stommel (September 27, 1920 – January 17, 1992) was a major contributor to the field of physical oceanography. Beginning in the 1940s, he advanced theories about global ocean circulation patterns and the behavior of the Gulf Strea ...
who formulated the first correct theory for the
Gulf Stream The Gulf Stream is a warm and swift Atlantic ocean current that originates in the Gulf of Mexico and flows through the Straits of Florida and up the eastern coastline of the United States, then veers east near 36°N latitude (North Carolin ...
and theories of the abyssal circulation. Long before these theories were formulated, mariners have been aware of the major surface ocean currents. As an example,
Benjamin Franklin Benjamin Franklin (April 17, 1790) was an American polymath: a writer, scientist, inventor, statesman, diplomat, printer, publisher and Political philosophy, political philosopher.#britannica, Encyclopædia Britannica, Wood, 2021 Among the m ...
already published a map of the
Gulf Stream The Gulf Stream is a warm and swift Atlantic ocean current that originates in the Gulf of Mexico and flows through the Straits of Florida and up the eastern coastline of the United States, then veers east near 36°N latitude (North Carolin ...
in 1770 and in European discovery of the gulf stream dates back to the 1512 expedition of
Juan Ponce de León Juan Ponce de León ( – July 1521) was a Spanish explorer and ''conquistador'' known for leading the first official European expedition to Puerto Rico in 1508 and Florida in 1513. He was born in Santervás de Campos, Valladolid, Spain, in ...
. Apart from such hydrographic measurement there are two methods to measure the ocean currents directly. Firstly, the Eulerian velocity can be measured using a current meter along a rope in the
water column The (oceanic) water column is a concept used in oceanography to describe the physical (temperature, salinity, light penetration) and chemical ( pH, dissolved oxygen, nutrient salts) characteristics of seawater at different depths for a defined ...
. And secondly, a drifter can be used which is an object that moves with the currents whereof the velocity can be measured.


Wind-driven upwelling

Wind-driven upwelling brings nutrients from deep waters to the surface which leads to biological productivity. Therefore, wind stress impacts biological activity around the globe. Two important forms of wind-driven upwelling are coastal upwelling and equatorial upwelling. Coastal upwelling occurs when the wind stress is directed with the coast on its left (right) in the Northern (Southern) Hemisphere. If so, Ekman transport is directed away from the coast forcing waters from below to move upward. Well known coastal upwelling areas are the
Canary Current The Canary Current is a wind-driven surface current that is part of the North Atlantic Gyre. This eastern boundary current branches south from the North Atlantic Current and flows southwest about as far as Senegal where it turns west and later jo ...
, the
Benguela Current The Benguela Current is the broad, northward flowing ocean current that forms the eastern portion of the South Atlantic Ocean gyre. The current extends from roughly Cape Point in the south, to the position of the Angola-Benguela Front in the no ...
, the
California Current The California Current () is a cold water Pacific Ocean ocean current, current that moves southward along the western coast of North America, beginning off southern British Columbia and ending off southern Baja California Sur. It is considered an ...
, the
Humboldt Current The Humboldt Current, also called the Peru Current, is a cold, low-salinity ocean current that flows north along the western coast of South America.Montecino, Vivian, and Carina B. Lange. "The Humboldt Current System: Ecosystem components and pro ...
, and the Somali Current. All of these currents support major fisheries due to the increased biological activities. Equatorial upwelling occurs due to the trade winds blowing towards the west in both the Northern Hemisphere and the Southern Hemisphere. However, the Ekman transport that is associated with these trade winds is directed 90° to the right of the winds in the Northern Hemisphere and 90° to the left of the winds in the Southern Hemisphere. As a result, to the North of the equator water is transported away from the equator and to the South of the equator water is transported away from the equator. This horizontal
divergence In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the rate that the vector field alters the volume in an infinitesimal neighborhood of each point. (In 2D this "volume" refers to ...
of mass has to be compensated and hence upwelling occurs.


Wind waves

Wind waves are waves at the water surface that are generated due to the shear action of wind stress on the water surface and the aim of gravity, that acts as a
restoring force In physics, the restoring force is a force that acts to bring a body to its equilibrium position. The restoring force is a function only of position of the mass or particle, and it is always directed back toward the equilibrium position of the s ...
, to return the water surface to its equilibrium position. Wind waves in the ocean are also known as ocean surface waves. The wind waves interact with both the air and water flows above and below the waves. Therefore, the characteristics of wind waves are determined by the coupling processes between the boundary layers of both the atmosphere and ocean. Wind waves also play an important role themselves in the interaction processes between the ocean and the atmosphere. Wind waves in the ocean can travel thousands of kilometers. A proper description of the physical mechanisms that cause the growth of wind waves and is in accordance with observations has yet to be completed. A necessary condition for wind waves to grow is a minimum wind speed of 0.05 m/s.


Expressions for the drag coefficient

The drag coefficient is a dimensionless quantity which quantifies the resistance of the water surface. Due to the fact that the drag coefficient depends on the past of the wind, the drag coefficient is expressed differently for different time and spatial scales. A general expression for the drag coefficient does not yet exist and the value is unknown for unsteady and non-ideal conditions. In general, the drag coefficient increases with increasing wind speed and is greater for shallower waters. The geostrophic drag coefficient is expressed as: :C_g = \frac, where U_g is the geostrophic wind which is given by: :U_g = \frac\frac. In global climate models, often a drag coefficient appropriate for a spatial scale of 1° by 1° and a monthly time scale is used. In such a timescale, the wind can strongly fluctuate. The monthly mean shear stress can be expressed as: : \langle\tau\rangle = \rho \langle C_D\rangle\langle U \rangle^2 \left(1+\frac\right), where \rho is the density, C_D is the drag coefficient, \langle U\rangle is the monthly mean wind and ''U is the fluctuation from the monthly mean. : C_D = 1.3\times 10^\left(1+\frac \right).


Measurements

It is not possible to directly measure the wind stress on the ocean surface. To obtain measurements of the wind stress, another easily measurable quantity like
wind speed In meteorology, wind speed, or wind flow speed, is a fundamental atmospheric quantity caused by air moving from high to low pressure, usually due to changes in temperature. Wind speed is now commonly measured with an anemometer. Wind spe ...
is measured and then via a parametrization the wind stress observations are obtained. Still, measurements of the wind stress are important as the value of the drag coefficient is not known for unsteady and non-ideal conditions. Measurements of the wind stress for such conditions can resolve the issue of the unknown drag coefficient. Four methods of measuring the drag coefficient are known as the Reynolds stress method, the dissipation method, the profile method and a method of using radar remote sensing.


Wind stress on land surface

The wind can also exert a stress force on land surface which can lead to erosion of the ground.


References

{{DEFAULTSORT:Wind Stress Fluid dynamics Physical oceanography