Wide Angle X-ray Scattering
   HOME

TheInfoList



OR:

In
X-ray crystallography X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
, wide-angle X-ray scattering (WAXS) or wide-angle X-ray diffraction (WAXD) is the analysis of
Bragg peak The Bragg peak is a pronounced peak on the Bragg curve which plots the energy loss of ionizing radiation during its travel through matter. For protons, α-rays, and other ion rays, the peak occurs immediately before the particles come to rest. ...
s scattered to wide angles, which (by
Bragg's law In many areas of science, Bragg's law — also known as Wulff–Bragg's condition or Laue–Bragg interference — is a special case of Laue diffraction that gives the angles for coherent scattering of waves from a large crystal lattice. It descr ...
) are caused by sub-nanometer-sized structures. It is an X-ray-diffraction method and commonly used to determine a range of information about crystalline materials. The term WAXS is commonly used in
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
sciences to differentiate it from SAXS but many scientists doing "WAXS" would describe the measurements as Bragg/X-ray/powder diffraction or
crystallography Crystallography is the branch of science devoted to the study of molecular and crystalline structure and properties. The word ''crystallography'' is derived from the Ancient Greek word (; "clear ice, rock-crystal"), and (; "to write"). In J ...
. Wide-angle X-ray scattering is similar to small-angle X-ray scattering (SAXS) but the increasing angle between the sample and detector is probing smaller length scales. This requires samples to be more ordered/crystalline for information to be extracted. In a dedicated SAXS instrument the distance from sample to the detector is longer to increase angular resolution. Most diffractometers can be used to perform both WAXS and limited SAXS in a single run (small- and wide-angle scattering, SWAXS) by adding a beamstop/knife edge.


Applications

The WAXS technique is used to determine the degree of
crystallinity Crystallinity refers to the degree of structural order in a solid. In a crystal, the atoms or molecules are arranged in a regular, periodic manner. The degree of crystallinity has a large influence on hardness, density, transparency and diffusi ...
of
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
samples. It can also be used to determine the chemical composition or phase composition of a film, the texture of a
film A film, also known as a movie or motion picture, is a work of visual art that simulates experiences and otherwise communicates ideas, stories, perceptions, emotions, or atmosphere through the use of moving images that are generally, sinc ...
(preferred alignment of crystallites), the crystallite size and presence of film stress. As with other diffraction methods, the sample is scanned in a wide-angle X-ray
goniometer A goniometer is an instrument that either measures an angle or allows an object to be rotated to a precise angular position. The term goniometry derives from two Greek words, γωνία (''gōnía'') 'angle' and μέτρον (''métron'') ' me ...
, and the scattering intensity is plotted as a function of the 2θ angle. X-ray diffraction is a non destructive method of characterization of solid materials. When X-rays are directed at solids they scatter in predictable patterns based on the internal structure of the solid. A crystalline solid consists of regularly spaced atoms (electrons) that can be described by imaginary planes. The distance between these planes is called the d-spacing. The intensity of the d-space pattern is directly proportional to the number of electrons (atoms) in the imaginary planes. Every crystalline solid has a unique pattern of d-spacings (known as the powder pattern), which is a fingerprint for that solid. Solids with the same chemical composition but different phases can be identified by their pattern of d-spacings.


References

X-ray scattering Diffraction {{spectroscopy-stub