HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a Walsh matrix is a specific
square matrix In mathematics, a square matrix is a Matrix (mathematics), matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Squ ...
of dimensions 2, where ''n'' is some particular
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
. The entries of the
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
are either +1 or −1 and its rows as well as columns are
orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
. The Walsh matrix was proposed by
Joseph L. Walsh __NOTOC__ Joseph Leonard Walsh (September 21, 1895 – December 6, 1973) was an American mathematician who worked mainly in the field of analysis. The Walsh function and the Walsh–Hadamard code are named after him. The Grace–Walsh–Szeg� ...
in 1923. Each row of a Walsh matrix corresponds to a Walsh function. The Walsh matrices are a special case of '' Hadamard matrices'' where the rows are rearranged so that the number of sign changes in a row is in increasing order. In short, a Hadamard matrix is defined by the
recursive Recursion occurs when the definition of a concept or process depends on a simpler or previous version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in m ...
formula below and is ''naturally ordered'', whereas a Walsh matrix is ''sequency-ordered''. Confusingly, different sources refer to either matrix as the Walsh matrix. The Walsh matrix (and Walsh functions) are used in computing the Walsh transform and have applications in the efficient implementation of certain
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, Scalar potential, potential fields, Seismic tomograph ...
operations.


Formula

The Hadamard matrices of dimension 2^k for k \in \mathbb are given by the recursive formula (the lowest order of Hadamard matrix is 2): :\begin H\left(2^1\right) &= \begin 1 & 1 \\ 1 & -1 \end, \\ H\left(2^2\right) &= \begin 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ \end, \end and in general :H\left(2^k\right) = \begin H\left(2^\right) & H\left(2^\right) \\ H\left(2^\right) & -H\left(2^\right) \end = H(2) \otimes H\left(2^\right), for 2 ≤ ''k'' ∈ N, where ⊗ denotes the
Kronecker product In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a specialization of the tensor product (which is denoted by the same symbol) from vector ...
.


Permutation

We can obtain a Walsh matrix from a Hadamard matrix. For that, we first generate the Hadamard matrix for a given dimension. Then, we count the number of sign changes of each row. Finally, we re-order the rows of the matrix according to the number of sign changes in ascending order. For example, let us assume that we have a Hadamard matrix of dimension 2^2 :H(4) = \begin 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ \end, where the successive rows have 0, 3, 1, and 2 sign changes (we count the number of times we switch from a positive 1 to a negative 1, and vice versa). If we rearrange the rows in sequency ordering, we obtain: :W(4) = \begin 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ \end, where the successive rows have 0, 1, 2, and 3 sign changes.


Alternative forms of the Walsh matrix


Sequency ordering

The sequency ordering of the rows of the Walsh matrix can be derived from the ordering of the Hadamard matrix by first applying the bit-reversal permutation and then the Gray-code
permutation In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first mean ...
: :W(8) = \begin 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ \end, where the successive rows have 0, 1, 2, 3, 4, 5, 6, and 7 sign changes.


Dyadic ordering

:W(8) = \begin 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ \end, where the successive rows have 0, 1, 3, 2, 7, 6, 4, and 5 sign changes.


Natural ordering

:H (8) = \begin 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ \end, where the successive rows have 0, 7, 3, 4, 1, 6, 2, and 5 sign changes (Hadamard matrix).


See also

*
Haar wavelet In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be repr ...
*
Quincunx matrix A quincunx ( ) is a geometry, geometric pattern consisting of five points arranged in a cross, with four of them forming a Square (geometry), square or rectangle and a fifth at its center. The same pattern has other names, including "in saltire" ...
*
Hadamard transform The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal ...
*
Code-division multiple access Code-division multiple access (CDMA) is a channel access method used by various radio communication technologies. CDMA is an example of channel access method, multiple access, where several transmitters can send information simultaneously over ...
* () – rows of the (negated) binary Walsh matrices read as reverse binary numbers * – antidiagonals of the negated binary Walsh matrix read as binary numbers


References

{{Matrix classes Matrices (mathematics) de:Hadamard-Matrix#Walsh-Matrizen